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Abstract 

In the present paper fixed point theorems are proved for  2- metric spaces with continous convex structure for 

more generalized conditions.  
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1. Introduction & Preliminaries: Since Banach’s fixed point theorem in 1922, because of its simplicity and 

usefulness, it has become a very popular tool in solving the existence problems in many branches of nonlinear 

analysis. For some more results of the generalization of this principle.  

Theorem 1A: Banach [1] The well known Banach contraction principle states that “If X is complete metric 

space and T is a contraction mapping on X into itself, then T has unique fixed point in X”. 

Theorem 1 B: Kanan [16] proved that “If T is self mapping of a complete metric space X into itself satisfying: 

        

   Then T has unique fixed point in X. 

Theorem 1C: Fisher [9] proved the result with  

     

   Then T has unique fixed point in X. 

Theorem 1D: A similar conclusion was also obtained by Chaterjee [3]. 

     

   Then T has unique fixed point in X. 

Theorem 1E: Ciric [5] proved the result 

     

       

 

   Then T has unique fixed point in X.   

Theorem 1F: Reich [22] proved the result  

      

   Then T has unique fixed point in X.  

Theorem1 G: In 1977, the mathematician Jaggi [14] introduced the rational expression first  

         

for all and   Then T has unique fixed point in X.  

Theorem1H: In 1980 the mathematicians Jaggi and Das [15] obtained some fixed point theorems with the 

mapping satisfying: 
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for all and   Then T has unique fixed point in X. 

  

These are extensions of Banach contraction principle [1] in terms of a new symmetric rational expression. 

Takahashi [30] has introduced the definition for convexity in metric space and generalized some fixed point 

theorems previously proved for the Banach space. Subsequently, Mochado [28], Tallman [31], Naimpally and 

Singh [29], Guay and Singh [26], Hadzic and Gajic [27] were among others who obtained results in this setting. 

This paper is a continuation of the investigation in the same setting in form of Altering distance function 

motivated by Sharma and Devangan [23], Sharma , Sharma, Iskey [24] 

To prove the main   result we need following modified definitions:  

Definition2.1. Let  be a 2-metric space and  be the closed unit interval. A mapping  is said 

to be a convex structure on  if for all , a > 0 

, for all . 

The metric space  together with a convex structure is called the Takahashi convex metric space.  

Any subset of a Banach space is a Takahashi convex metric space with  

.  

Definition 2.2 Let  be a convex 2-metric space. A nonempty subset  of  is said to be convex if and only if 

 whenever .  

Takahashi [5] has shown that the open and closed balls are convex and that an arbitrary intersection of convex 

sets is also convex.  

For an arbitrary  let  

(1)   . 

It is easy to see that  

 is a mapping with the properties:  

(i)  for ,  

(ii) , for , 

(iii) , for any . 

Using this notation we can see that  is convex iff . 

Definition2.3. A convex 2-metric space   will be said to have property  iff every bounded decreasing set of 

nonempty closed convex subset of  has nonempty intersection. 

Definition 2.4. Let  be a convex 2-metric space and  be a nonempty closed, convex bounded set in . For 

, a > 0 let us set  

 
And  

 We thus define  to be the centre of . 

  We denote the diameter of a subset  of  by  

. 

Definition2. 5. A point  is a diametral point of  iff  

 
Definition2.6. A convex 2-metric space  is said to have normal structure iff for each closed bounded, convex 

subset  of , containing at least two points, there exists , which is not a diametral point of . 

Remarks Any compact convex 2-metric space has a normal structure.  

Definition 2.7.  Convex hull of the set  is the intersection of all convex sets in  containing , an is 

denoted by convex . 

It is obvious that if  is a convex set, then  

 for any . 

If we set  

  

Then the sequence  will be increasing and lim  exists, and lim 

  

In 1984, M.S. Khan , M. Swalech and S.Sessa [19] expanded the research of the metric fixed point theory to a 
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new category by introducing a control function which they called an altering distance function. Motivated by 

them we find the same for 2- metric spaces as follows  

Definition 2.8 ([19]) A function :y + +Â ®Â  is called an altering distance function if the following 

properties are satisfied: 

1( ) ( ) 0 0t ty y = Û =  

2( )y y  is monotonically non-decreasing. 

3( )y y
  

is continuous.  

By y we denote the set of the all altering distance functions. 

Theorem2.9 ( [49] ) Let ( , )M d  be a complete 2-metric space, let  y ÎY  and let :S M M®  be a 

mapping a > 0 which satisfies the following inequality 

                                             

 For all ,x y MÎ and for some 0 1a< <  . Then  S  has a unique fixed point 
0z MÎ and moreover for each 

0lim n

n
x M S x z

®¥
Î =

 

Lemma 2.10Let ( , )M d be 2- metric space. Let { }nx be a sequence in M  such that  

                                                  
If { }nx  is not a Cauchy sequence in M , then there exist an 

0 0e > and sequences of integers positive 

{ ( )}m k and{ ( )}n k  with  

                                  
( ) ( )m k n k k> >

 

Such that  

    

 

                          
≥   , 

  

(i) 
 

 

(ii)   

(iii)   

Remark 2.11 It  is easy to get  

                           

y y y y y  g

 

Definition (2.12) A 2- metric space is a space X in which for each triple of points x, y, z, there exists a real 

function d (x,y,z,) such that  

[M1] to each pair of distinct points x,y,z,  

d (x,y,z) ¹ 0   

[M2] d (x,y,z) = 0 when at lest two of  x,y,z are equal  

[M3] d (x,y,z) = d (y,z,x) = d (x,z,y)  

[M4] d (x,y,z) £ d (x,y,v) + d (x,v,z) + d (v,y,z) for all x,y,z, v in X.  

Definition (2.13): A sequence {xn} in a 2-metic space (X,d) is said to be convergent at x if  

    limit d (xn, x, z) = 0 for all z in X.  

        n ®¥  

 

Definition (2.14) A sequence {xn} in a 2-metric space, (x, d) is said to be Cauchy sequence if 

     limit d (xn, x, z) = 0 for all z in X.  

      m,n ®¥  

Definition (2.15) A 2-metic space (X, d) is said to be complete if every Cauchy sequence in X is convergent. 

Also, we need the following propositions:  

Proposition 1[23]. Let  be a convex 2- metric space. Then  

(2)   



Network and Complex Systems                                                                                                                                                         www.iiste.org 

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) 

Vol.6, No.2, 2016 

 

27 

In the remaining part of this paper  will denote a convex 2-metric space.  

Proposition 2 [ 23]. For any subset  of   

.  

3. Main result  

Now we prove the following  

Theorem 3.1. Let a function :y + +Â ®Â  is an altering distance function.  be 2- metric space with 

continuous convex structure and let  be a closed convex bounded subset of  with normal structure and 

propertytyty  

If  is a continuous mapping such that for , a > 0 

(3)   

Then  has a fixed point.  

Proof. Let  be a family of non-empty closed convex subsets  so that , then  is non-empty 

since . We partially order  by inclusion, and let  be the decreasing chain in . Then by 

Property  we have that  

 
So,  

. 

Therefore, any chain in  has a greatest lower bound, and by Zorn’s Lemma there is a minimal member  in . 

We claim that  is a singleton set. If not, then, as shown by Takahashi [5], the centre of , denoted by , is a 

non-empty proper closed convex subset of . Now, it is easy to see that  

. 

Now, let us define a sequence  and  

  

Clearly, . Thus we shall prove by induction that  

(4) , for any . 

For  (5) is valid. Suppose that it is valid for  then we show that it is also valid for 

. 

By definition of  for any sequence  there exist , so that  

.  

Then, by proposition 2 we have three cases:  

(i)   

(ii)  

(iii)   

Considering the first case it is clear that . So, let us see the second one. For any  thus we have  

(5)  

We assume that (6) is valid for  and prove that it is valid for .  

For any  , by preposition 1,  for some . Then  

(6) , 

For , (I-finiter set),  and  for . In (7) is sufficient to 

look only for the case wthen .  

Further, we have  
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Where we suppose  

for  that   

for  that   

for  that   

for  that   

for  that  

for  that  

for  that   

for  that   

for  that . 

Now, using the hypothesis, one can see that  

  

  

  

  

  

Since by induction, similarly, we have  

  

   

  

  

 , 

for  and  Therefore 

  

and  

   

  

Fixed point theorem in convex metric space  

  

 . 

After not more than  steps we shall that  

,  

for  

  

  

And 

. 

Since  is the centre we have that 

 , 

Which implies that  

 for all . 

 Similarly, we can prove that  

 for all . 

So, in the second case we have  
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,for , 

And consequently  

.  

Using (4) it is easy to prove this inequality for case (iii). Thus,  

 for all . 

Let us define   

 is non-empty. So,  is non-empty too.  

Since  is a closed proper subset of . 

Moreover,  is continuous and that closure of convex set is convex.  

Since mapping  is continuous so,  

 And therefore  is a subset of , which is a contradiction to the minimality of . Hence,  

consists of a single element which is a fixed point forr .  
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