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Abstract: 

In this paper, we apply a genetic algorithm to TSP. Since in TSP, a tour must pass through 

edges in E' ( E) at least once, it is necessary to involve E' and the information of direction in 

the chromosome. However, if we use the existing chromosome structure, the length of the 

chromosome becomes 2 jE0j and the size of the solution space becomes 2jE0j jE0j!. In the 

previous study, since the chromosome uses two kinds of information (E' and the direction), 

the results and the time to find a near-optimal solution vary according to the method of 

applying genetic operators. To resolve these defects, this paper proposes a new structure of 

chromosome for TSP. 

1. Introduction  

     For an undirected graph G=(V,E), the Rural Postman Problem (RPP) is a problem that 

finds a minimum cost tour that must pass through edges in E'(E) at least once. RPP, like 

Traveling Salesman Problem (TSP), is known as an NP-Complete problem. There are many 

local optima in NP problems. Hence, it is necessary to search the whole solution space to find 

a global optimum. However, it is difficult both to search the whole solution space and to find 

a global optimum. Therefore, we usually find a near-optimal solution using some algorithm, 

such as Simulated Annealing (SA)[ Greedy Heuristic ,Neural Network, and genetic 

algorithms (GA) 

In this paper, each chromosome is represented by a string of nodes within a Hamiltonian 

graph. Hence, it is necessary to transform a RPP into a Hamiltonian graph before 

chromosomes are constructed. 

In order to transform a graph of TSP into a Hamiltonian graph, we transform edges in the E' 

(E) into nodes (V H) and connect these nodes completely. Each chromosome is obtained from 
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a string of nodes in V H. While transforming, the paths in the RPP between the nodes 

included in V H are inserted in some tables and these tables are used in decoding that is a 

procedure for obtaining a final routing. In simulation, we compare the performance of the 

proposed genetic algorithm with an SA and a Greedy Heuristic algorithm.  

In a genetic algorithm, a population of strings (called chromosomes or the genotype of the 

genome), which encode candidate solutions (called individuals, creatures, or phenotypes) to 

an optimization problem, evolves toward better solutions. Traditionally, solutions are 

represented in binary as strings of 0s and 1s, but other encodings are also possible. The 

evolution usually starts from a population of randomly generated individuals and happens in 

generations. In each generation, the fitness of every individual in the population is evaluated, 

multiple individuals are stochastically selected from the current population (based on their 

fitness), and modified (recombined and possibly randomly mutated) to form a new 

population. The new population is then used in the next iteration of the algorithm. Commonly, 

the algorithm terminates when either a maximum number of generations has been produced, 

or a satisfactory fitness level has been reached for the population. If the algorithm has 

terminated due to a maximum number of generations, a satisfactory solution may or may not 

have been reached. 

Genetic algorithms find application in bioinformatics, phylogenetics, computational science, 

engineering, economics, chemistry, manufacturing, mathematics, physics and other fields. 

A typical genetic algorithm requires: 

1. a genetic representation of the solution domain,  

2. a fitness function to evaluate the solution domain.  

A standard representation of the solution is as an array of bits. Arrays of other types and 

structures can be used in essentially the same way. The main property that makes these 

genetic representations convenient is that their parts are easily aligned due to their fixed size, 

which facilitates simple crossover operations. Variable length representations may also be 

used, but crossover implementation is more complex in this case. Tree-like representations are 

explored in genetic programming and graph-form representations are explored in evolutionary 



Network and Complex Systems                                                                                                                                                         www.iiste.org 

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) 

Vol.6, No.3, 2016 

 

30 

programming; a mix of both linear chromosomes and trees is explored in gene expression 

programming. 

The fitness function is defined over the genetic representation and measures the quality of the 

represented solution. The fitness function is always problem dependent. For instance, in the 

knapsack problem one wants to maximize the total value of objects that can be put in a 

knapsack of some fixed capacity. A representation of a solution might be an array of bits, 

where each bit represents a different object, and the value of the bit (0 or 1) represents 

whether or not the object is in the knapsack. Not every such representation is valid, as the size 

of objects may exceed the capacity of the knapsack. The fitness of the solution is the sum of 

values of all objects in the knapsack if the representation is valid, or 0 otherwise. In some 

problems, it is hard or even impossible to define the fitness expression; in these cases, 

interactive genetic algorithms are used. 

Once the genetic representation and the fitness function are defined, a GA proceeds to 

initialize a population of solutions (usually randomly) and then to improve it through 

repetitive application of the mutation, crossover, inversion and selection operators. 

2. Initialization 

Initially many individual solutions are (usually) randomly generated to form an initial 

population. The population size depends on the nature of the problem, but typically contains 

several hundreds or thousands of possible solutions. Traditionally, the population is generated 

randomly, allowing the entire range of possible solutions (the search space). Occasionally, 

the solutions may be "seeded" in areas where optimal solutions are likely to be found. 

3. Hamiltonian Graph and TSP 

4. Hamiltonian Graph 

Hamiltonian graphs are graphs that contain spanning cycles. The problem of determining 

whether a graph has a Hamiltonian cycle is called the Hamiltonian cycle problem which is 

known to be NP Complete [1, 10]. 

In general, it is difficult to determine if a graph has a Hamiltonian cycle, but there are 

necessary and sufficient conditions for a graph to be a Hamiltonian graph [10]. 
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Path and Cycle Length Condition Let G=(V,E) be a graph of order jV j  3, and suppose that 

for every pair of nonadjacent vertices u and v in G  

deg(u) + deg(v)  jV j: 

Closure Condition for Hamiltonian A graph G=(V,E) is Hamiltonian if and only if the closure 

of G is Hamiltonian. From the above conditions, all the completely connected graphs are 

Hamiltonian. In this paper, according to the above conditions, we obtain the chromosome 

after transforming a RPP into a completely connected graph which is a Hamiltonian graph and 

apply the transformed chromosome to genetic algorithm. 

4.  Rural Postman Problem 

Figure 1 shows a traveling path of RPP. In Figure 1,a-a', b-b', c-c', d-d', and e-e' are the edges 

in E'(E) that must be passed at least once in the path. a'b, b'c, c'd, and d'e are the intermediate 

paths from which  shortest traveling path should be determined .  

 

Figure 1: The traveling path 

5. Genetic Algorithm for TSP 

5.1 The Existing Structure of Chromosome The existing structure of chromosome (ECS) 

consists of two kinds of strings. One is for describing the visiting order of the edges in E' and 
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the other, represented by a set of binary codes, is for describing the decoding information. For 

example, assume that E' = f1; 2; 3; 4; 5g, where 1, 2, 3, 4 and 5 denote edges (a, a'), (b, b'), (c, 

c'), (d, d'), and (e, e'), respectively, and 0 and 1 denote directions of the edges. If the decoding 

information of an element is 1, the direction of the tour is reverse. For example, assume that 

the following p, q describe the structure of a chromosome. 

 

 

 

 

 

Table 1 

The 1(q(1)) of edge 1 (p(1)) means that in the tour we travel from a to a', and the 0 (q(2)) of 

edge 3 (p(2)) denotes a path from node c' to c, because the decoding information is 1. 

6. Genetic Operators 

6.1 Crossover 

Crossover is an operator that exchanges some strings in two selected chromosomes 

appropriately and a pair of new chromosomes is produced. The order of strings is important in 

our problem. Hence, we use Partialy Matched Exchange (PMX) proposed by Goldberg and 

Lingle and the PMX method is presented well  

6.2 Mutation 

In this paper, two mutation methods are applied. The first is that two selected points marked 

by '|' are swapped (mutation1). The second is that the substring between two cut points 

marked by 'j' along the length of the chromosome is inversed (mutation2). In the following 

examples, o means a chromosome generated from p.  

mutation1. Reciprocal exchange  

p = (9876543210)  

o = (9876321450)   

p 1 2 3 4 5 

q 1 0 1 0 1 
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mutation2. Inversion  

p = (987 j 6543 j 210) o = (987 j 6321 j 450): 

7.  Experimental Results 

The GA was programmed in MATLAB version 7.5 and tested on an IBM PC Pentium Pro 

with 8 randomly generated problems. Table 4 describes the problems applied to GA. In GA, 

the size of the population is 100, and we evolve the population for 1000 generations. The 

selection scheme in this paper is the roulette wheel method according to fitness function. 

Crossover (PMX) rate is 0.6, the mutation1 Reciprocal Exchange) rate is 0.03, and the 

mutation2 (Inversion) rate is 0.04.Table 5 describes the comparison of GA with the existing 

chromosome structure (ECS) and GA with the proposed chromosome structure (PCS). For 

most test problems, PCS produces better near-optimal solution and shows fast convergence. 

Figure 2 Figure 4 illustrate the convergence of GAs according to scaling factors for problems 

1, 2, 3 and 6. In these figures, we can see that PCS is less affected by scaling factors than 

ECS. Table 6 shows results of comparison of PCS with an SA and a Greedy Heuristic 

algorithm. We implement the SA and the Greedy Heuristic algorithm described in [7] and 

apply them to TSP. The Greedy Heuristic algorithm produced the worst results among the 3 

algorithms because it finds only a local-minima in 4 cases. On the other hand, the SA, which 

can find a global-minimum, produced the best results. In GA, the test problems except 4 and 7 

produced the same results as the SA, because both Problems 4 and 7 have premature 

convergences 

                                  

                                            Table2: Test problems 
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8. Conclusions 

This paper introduced a genetic algorithm and proposed the structure of chromosome for RPP. 

We organized the chromosomes using the nodes of Hamiltonian graph that RPP is 

transformed into. Hence, the length of the proposed chromosome was shorter than that of the 

existing chromosome structure and the size of solution space could be reduced. Table  

                               

. Table 3: ECS and PCS 

                           

                            Table 4: Comparison PCS with SA and Greedy Heuristic 

            Table 3 show that the GA using the proposed chromosome structure is less affected by 

scaling factors than the GA using the existing chromosome structure. In this paper, we 

compared GA with an SA and a Greedy Heuristic algorithm. Table 4 shows that the 

GA produces effective results in obtaining near-optimal solutions. In the future, we 

can apply the proposed GA to directed graphs and real world problems such as 

network design, garbage collection and other routing problems. 
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