
Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.3, No.7, 2013

7

Implementation of Query Optimization for Reducing Run Time

S.C.Tawalare

Dept of Information Technology,Sipna’s College of Engineering &Technology,Amravati (MS) INDIA

swatitawalare18@rediffmail.com

Prof. S.S.Dhande

Dept of computer science &engg., Sipna’s College of Engineering &Technology, Amravati (MS) INDIA

dhande_123@rediffmail.com

Abstract

Query optimization is the process of selecting the most efficient query-evaluation plan from many strategies so,

In this paper we have developed a technique that performs query optimization at compile-time to reduce the

burden of optimization at run-time to improve the performance of the code execution. using histograms that are

computed from the data and these histograms are used to get the estimate of selectivity for query joins and

predicates in a query at compile-time. With these estimates, a query plan is constructed at compile-time and

executed it at run-time

Keywords: runtime, query optimization ,compile time histogram

1. Introduction

The query optimizer is the component of a database management system that attempts to determine the most

efficient way to execute a query. The optimizer considers the possible query plans for a given input query, and

attempts to determine which of those plans will be the most efficient. Query processing is the sequence of

actions that takes as input a query formulated in the user language and delivers as result the data asked for.

Query processing involves query transformation and query execution. Query transformation is the mapping of

queries and query results back and forth through the different levels of the DBMS. Query execution is the actual

data retrieval according to some access plan, i.e. a sequence of operations in the physical access language. In this

paper, we have developed a technique that performs query optimization at compile-time to reduce the burden of

optimization at run-time to improve the performance of the code execution. The proposed approach uses

histograms that are computed from the data and these histograms are used to get the estimate of selectivity for

query joins and predicates in a query at compile-time. With these estimates, a query plan is constructed at

compile-time and executed it at run-time.

1.1 Query Optimization

Query processing is the process of translating a query expressed in a high-level language such as SQL into low-

level data manipulation operations. Query Optimization refers to the process by which the best execution

strategy for a given query is found from a set of alternatives. Typically query processing involves many steps.

The first step is query decomposition in which an SQL query is first scanned, parsed and validate. The scanner

identifies the language tokens – such as SQL keywords, attribute names, and relation names – in the text of the

query, whereas the parser checks the query Syntax to determine whether it is formulated according to the syntax

rules of the query language. The query must also be validated, by checking that all attribute and relation names

are valid and semantically meaningful names in the schema of the particular database being queried. An internal

representation of the query is then created. A query expressed in relational algebra is usually called initial

algebraic query and can be represented as a tree data structure called query tree. It represents the input relations

of the query as leaf nodes of the tree, and represents the relational algebra operations as internal nodes. For a

given SQL query, there is more than one possible algebraic query. Some of these algebraic queries are better

than others. The quality of an algebraic query is defined in terms of expected performance. Therefore, the second

step is query optimization step that transforms the initial algebraic query using relational algebra transformations

into other algebraic queries until the best one is found. A Query Execution Plan (QEP) is then founded which

represented as a query tree includes information about the access method available for each relation as well as

the algorithms used in computing the relational operations in the tree. The next step is to generate the code for

the selected QEP; this code is then executed in either compiled or interpreted mode to produce the query

result.(fig.1)

1.1.1 Static Optimization

if optimization is performed once at compiled time. For each invocation at runtime, The plan is activated and

executed. If however the state of DBMS changes frequently, it is usually optimized the query a new for each

invocation. This compiled time optimization is called as static in that it cannot use the information available at

runtime such as current statistics. The common solution is to periodically reoptimize queries with new statistics,

based on the pace at which the relevant statistic changes. For instance, describe a schema in which query

execution plan generated by an optimizer are re-optimized just before query execution time.

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.3, No.7, 2013

8

• In static optimization more time available to evaluate larger number of execution strategies

• The runtime overhead is removed.

 Static Analysis of queries: Static analysis is a compile time framework of static optimization it

performs the following tasks:

1. Type checking: each name and each operator is checked according to the hierarchy.

2. Generating syntax trees of queries which are then modified by queries re-writing methods.

2 Building the Histogram

A histogram is one of the basic quality tools. It is used to graphically summarize and display the distribution and

variation of a process data set. A frequency distribution shows how often each different value in a set of data

occurs. The main purpose of a histogram is to clarify the presentation of data. You can present the same

information in a table; however, the graphic presentation format usually makes it easier to see relationships. It is

a useful tool for breaking out process data into regions or bins for determining frequencies of certain events or

categories of data. From the data distribution, we build the histogram that contains the frequency of values

assigned to different buckets. Frequency distribution for numerical data is straight forward but frequency

distribution for alphabetical data is not. Now considering the alphabetical data such as first names, last names,

Organization names etc., question arises as to how we can split these into buckets. The idea we propose here is

to group the alphabetical data with respect to the letter they start with and alphabets of similar frequency of

occurrences grouped into a single bucket. To do this grouping, we make use of statistics from Figure2. that are

computed by analysts showing the probable number of occurrences of each alphabet as a starting alphabet of

textual data. This grouping avoids the existence of a very high frequency alphabet with a very low frequency

alphabet in a bucket.(fig.2)

2.1 The Split & Merge Algorithm

The split and merge algorithm helps reduce the cost of building and maintaining histograms for large tables. The

algorithm is as follows: When a bucket count reaches the threshold, T, we split the bucket into two halves

instead of recomputing the entire histogram from the data .To maintain the number of buckets (β) which is fixed,

we merge two adjacent buckets whose total count is least and does not exceed threshold T, if such a pair of

buckets can be found. Only when a merge is not possible, we recomputed the histogram from data. The

operation of merging two adjacent buckets merely involves adding the counts of the two buckets and disposing

of the boundary between them. To split a bucket, an approximate median value in the bucket is selected to serve

as the bucket boundary between the two new buckets using the backing samples new tuple are added, we

increment the counts of appropriate buckets. When a count exceeds the threshold T, the entire histogram is

recomputed or, using split merge, we split and merge the buckets. The algorithm for splitting the buckets starts

with iterating through a list of buckets, a splitting the buckets which exceed the threshold and finally returning

the new set of buckets .After splitting is done, we try to merge any two buckets that add up to the least value and

whose count is less than a certain threshold. Then we merge those two buckets. If we fail to find any pair of

buckets to merge then we recomputed the histogram from data. Finally, we return the set of buckets at the end of

the algorithm. Thus, the problem of incrementally maintaining the histograms has been resolved. Having

estimated the selectivity of a join and predicates, we get the join and predicate ordering at compile-time.

2.2 Estimating Selectivity Using Histogram

The selectivity of a predicate in a query is a decisive aspect for a query plan generation. The ordering of

predicates can considerably affect the time needed to process a join query. To have the query plan ready at

compile-time, we need to have the selectivities of all the query predicates. To calculate these selectivities, we

use histograms. The histograms are built using the number of times an object is called. For this, we partition the

domain of the predicate into intervals called windows. With the help of past queries, the selectivity of a

predicate is derived with respect to its window. This histogram approach would help us in estimating the

selectivity of a join and hence decide on the order in which the joins have to be executed. So, we get the join

ordering and the predicate ordering in the query expression at compile-time itself. Thus, from this available

information, we can construct a query plan.

3 experimental setup and Results

The experimental trials show that our method performs better in terms of run time comparisons than the existing

query optimization as showing the difference between standard result and optimized optimal result, in terms of

compile time and runtime

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.3, No.7, 2013

9

Screenshot1: compile ,optimal and standard time

Screenshot shows main GUI consist of Query Input in which if we insert a query and then click submit button

it will get Execution time of query

t

Screenshot 2: simple Query execution

Screenshot 3: complex query execution

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.3, No.7, 2013

10

Screenshot 4: histogram

Screenshot 4 shows the data of the database whenever the changes occur in database it will show in the form of

histogram

References

[1] Venkata Krishna,Suhas Nerella,Swetha Surapaneni,Sanjay Kumar Madria and Thomas Weigert Department

of Computer Science, Missouri University of Science and Technology, Rolla, MO Exploring QueryOptimization

in Programming Codes by ReducingRun-TimeExecution,0730-3157/10©2010IEEEDOI

10.1109/COMPSAC.2010.48

[2]“Query Optimization in distributed databases” by Dilşat ABDULLAH reference Ibaraki, T. and T. Kameda.

(1984). “On the Optimal Nesting Order for Computing N-Relational Joins.” ACM Transactions on Data Bases 9,

482–541

[3] Chaudhuri, Surajit. An Overview f Query Optimization in Relational Systems. New York, USA. 1998.[4]

Ioannidis, Yannis E. and Cha Kang, Younkyung. Left-deep vs bushy trees: an analysis of strategy space and its

implications for query optimization. ACM Press, New York, USA. 1991

[5] 17. Ioannidis, Yannis E. Query Optimization, ACM Press, New York, USA. 1996.

[6] J. Plodzien, “Optimization of Object query Language”,Ph.D.Thesis, Institute Of Computer Science,Polish

Academy Of Science,2000.

[7]“Object Oriented Database System-Servey-Caixue Lin,April 2003 reference SIGMOD record 19,IEEE

[8] Ashraf Aboulnaga,Surajit Chaudhuri,“Self-tuning Histograms: building histograms without looking at data”,

Proceedings of the 1999 ACM SIGMOD international conference on Management of data, pp. 181-292, 1999

[9] C. Hobatr and B. A. Malloy, “The design of an OCL query based debugger for C++”, In Proceedings of the

ACM Symposium on Applied Computing (SAC), pages 658–662.ACM Press, 2001.

Table 1: execution time of query

Compile time 0.14

Optimal time 0.05

Standard time 1.76

Table1: shows the difference of compile time, standard time, optimal time of a query

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.3, No.7, 2013

11

Figure.1 query optimization process

Figure.2 Frequency distribution of alphabet

Figure .3 The Split & Merge Algorithm

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

CALL FOR JOURNAL PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. There’s no deadline for

submission. Prospective authors of IISTE journals can find the submission

instruction on the following page: http://www.iiste.org/journals/ The IISTE

editorial team promises to the review and publish all the qualified submissions in a

fast manner. All the journals articles are available online to the readers all over the

world without financial, legal, or technical barriers other than those inseparable from

gaining access to the internet itself. Printed version of the journals is also available

upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Recent conferences: http://www.iiste.org/conference/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

