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Abstract 
Network Intrusion detection System (NIDS) is an intrusion detection system that tries to discover malicious 

activity such as service attacks, port scans or even attempts to break into computers by monitoring network 

traffic. Data mining techniques make it possible to search large amounts of data for characteristic rules and 

patterns. If applied to network monitoring data recorded on a host or in a network, they can be used to detect 

intrusions, attacks or anomalies. We proposed “machine learning method”, cascading Principal Component 

Analysis (PCA) and the Q-learning methods to classifying anomalous and normal activities in a computer 

network. This paper investigates the use of PCA to reduce high dimensional data and to improve the predictive 

performance. On the reduced data, representing a density region of normal or anomaly instances, Q-learning 

strategies are applied for the creation of agents that can adapt to unknown, complex environments. We attempted 

to create an agent that would learn to explore an environment and collect the malicious within it. We obtained 

interesting results where agents were able to re-adapt their learning quickly to the new traffic and network 

information as compare to the other machine learning method such as supervised learning and unsupervised 

learning.  

Keywords: Intrusion, Anomaly Detection, Data Mining, KDD Cup’99, PCA, Q-learning. 

 

1. INTRODUCTION 

Network intrusion detection systems (NIDS) are most efficient way of shielding against network-based attacks 

intended at computer systems [1, 2]. Basically, there are two main types of intrusion detection systems: 

signature-based (SBS) and anomaly-based (ABS). SBS systems [3, 4] rely on pattern recognition techniques. 

ABS systems [5] build a statistical model describing the normal network traffic, and any abnormal action that 

deviates from the model is recognized. A network anomaly by malicious or unauthorized users can cause harsh 

interruption to networks. Hence the development of a robust and reliable network anomaly detection system 

(ADS) is progressively more important.  Anomaly Detection System (ADS) monitors the performance of a 

system and flag major deviations commencing the normal activity as an anomaly. 

In this work our goal is to make anomaly-based intrusion feasible. In our experiment, we used KDD Cup 1999 

dataset [6]. The dataset consisted of 494,021 records single connection vectors each of which contains 41 

features. Each record is labeled as either normal or attack type, with precisely one specific attack type. The space 

and time complexities of largely classifiers used are exponential function of their input vector size [7]. 

Additionally, the demand for the number of samples for the training the classifier develops exponentially with 

the dimension of the feature space. This limitation is called the ‘curse of dimensionality’. Pragmatic studies 

specify that feature reduction technique is capable of reducing the dimension of dataset. In this work we aim to 

sort out superfluous information and extensively reduce number of computer resources, both memory and CPU 

time vital to detect attacks. This paper propose Principal Component Analysis (PCA) as a reduction tool and Q-

learning algorithm as a learning tool for the developed system, firstly we reduce the features and then apply the 

learning algorithm. Q-learning will help to identify the unknown attacks [8]. 

1.1 Plan of the Paper 

This paper planned as follows, in the second section we give an introduction to Intrusion Detection Systems 

(IDS), section three gives the introduction Data Mining classifications methods for Anomaly Detection Systems 

(ADS), section four give information about techniques of feature reduction, section fifth explains the proposed 

algorithm, section sixth shows the experimental result, finally in section seventh conclusion and future work are 

shown. 

 

2. INTRUSION DETECTION SYSTEM 
Intrusion Detection System (IDS) is software that automates the intrusion detection process and detects possible 

intrusions. IDS serve three essential security functions: they monitor, detect, and respond to unauthorized 

activity by insiders and outsider intrusion. An ID is a system for detecting intrusions and reporting them 
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precisely to the suitable authority.  

2.1 Types of IDS 

These are the following types of Intrusion detection systems: 

2.1.1. Network Intrusion Detection System 

NIDS examines the behavior of a specified environment and make a decision whether these activities are 

malicious (intrusive) or legitimate (normal) based on system integrity, confidentiality and the availability of 

information resources [9]. NIDS does this by reading all incoming packets and endeavoring to find number of 

TCP connection demands to a huge number of different ports is detected, one could suppose that there is 

someone conducting a port scans of some or all of the computers in the network. It typically tries to detect 

incoming shell codes in the same approach that a usual intrusion detection system does. Frequently examining 

precious information about an ongoing intrusion can be learned from outgoing or local traffic and also work with 

other systems as well. For example renew some firewalls blacklist with the IP address of computers used by 

intruder. 

2.1.2. Host-based Intrusion Detection System 

 Host-based intrusion detection system (HIDS) examines elements of the dynamic behavior and the status of 

computer system, vigorously inspects the network packets [9]. A HIDS also check that proper regions of 

memory have not been modified, for example- the system-call table comes to mind for Linux and various v table 

structures in Microsoft Windows. For each object in question typically remember its attributes and create a 

checksum of some kind (an MD5, SHA1) for the substances, this information gets stored in a protected database 

for later comparison (checksum-database). At installation time- whenever any of the observed objects change 

legitimately- a HIDS have to initialize its checksum database by examining the proper objects. Persons in charge 

of computer security need to control this process tightly in order to prevent intruders making unauthorized 

changes to the database. 

2.2 IDS Techniques  

There are two complementary trends in intrusion detection [10]: 

2.2.1. Misuse detection  

The search for evidence of attacks based on the knowledge collected from known attacks and is referred to as 

misuse detection or detection by appearance.  

2.2.2. Anomaly detection  

The search for deviations from the model of unusual behavior based on the observations of a system during a 

normal state and is referred to as anomaly detection or detection by behavior.                          

 

3. DATA MINING TECHNIQUES FOR ADS 

Data mining is extracting facts, secret information in large degrees of raw data. Typical tasks of data mining are 

detecting fraud and abuse in insurance and finance, predict peak load of a network. Hence Data Mining-based 

anomaly detection is become widespread in essence. Intrusion is an action that tries to destroy that secrecy, 

integrality and usability of network information, which is unlicensed and exceed authority. Data mining can be 

supervised, unsupervised supervised or reinforcement learning is to use the available data to build one particular 

variable of interest in terms of rest of data. 

Anomaly detection refers to discovering patterns in a given dataset that deviates from an established normal 

behavior. The patterns as a result detected are called anomalies and turn to critical and actionable information in 

several application domains. Anomalies are also known as outlier, surprise deviation etc. Anomaly detection 

algorithms require a set of normal data to train the model and implicitly consider that anomalies can be treated as 

patterns not observed before. An outlier may be defined as a data point which is very different from the rest of 

the data, based on some measure; we use several detection methods in order to see how efficiently these methods 

may deal with the problem of anomaly detection. The statistics community has studied the concept of outliers 

widely. In these techniques, the data points are modeled using a stochastic distribution and points are verified to 

be outliers depending upon their relationship with this model. On the other hand with increasing dimensionality, 

it becomes gradually more difficult and inaccurate to estimate the multidimensional distributions of the data 

points. 

Profile based methods: This method is similar to rule based method but in this profile of normal behavior is 

built for different types of network traffics, users, and all devices and deviance from these profiles means 

intrusion. 

Statistical based methods: Statistical methods observe the user/network behavior by measuring explicit 

variables statistics over time [11]. 

Distance based methods: These methods try to conquer restraints of statistical outlier detection approach when 

the data are difficult to estimate in the multidimensional distributions [12]. 

Rule based: Rule based system uses a set of “if-then” implication rules to distinguish computer attacks.  
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State transition: In this approach IDSs try to indentify intrusion by using a finite state machine that deduced 

from network. IDS states communicate to dissimilar states of the network and an event make transfer in this 

finite state machine. An activity identifies intrusion if state transitions in the FSM of network reflect to 

continuation state. 

Model based methods: Other approaches based on deviation normal and abnormal behavior is modeling them 

but without creating several profile for them .In model based methods, researchers effort to model the normal 

and/or abnormal behaviors and divergence from this model means intrusion. 

Signature based: Matching available signatures in its database with collected data from activities for identifying 

intrusions. 

Neural Network Based: This Neural Network model solved normal attack patterns and the type of the attack. 

When given data was presented to the model. 

 

4. FEATURE REDUCTION TECHNIQUES  

In machine learning and statistics, dimension or feature reduction is the process of reducing the number of 

random variables under consideration, and can be divided into feature selection and feature extraction. Feature 

reductions concern with the mapping of the multidimensional space into lower space dimensions [13]. Feature 

extraction includes features construction, sparse representations, space dimensionality reduction, and feature 

selection all these techniques are  used as pre-processing to machine learning and statistics tasks of prediction, 

including pattern recognition. Though such problems have been tackled by researchers, there has been recently a 

renewed interest in feature extraction. The reduced feature space truly contributes to classification that cuts pre-

processing costs and minimizes the effects of the ‘peaking phenomenon’ in classification [14], thus improving 

the overall performance of IDS. The frequently used dimensionality reduction techniques consist of supervised 

approaches such as Linear Discriminant Analysis (LDA), Random projection, unsupervised ones such as 

Principal Component Analysis (PCA), and added spectral and manifold learning methods. One inadequacy of the 

supervised methods is that attribute that describe examples of infrequent classes tend to be easily removed as a 

result of dimensionality reduction making use of the class distribution. 

 

5. PROPOSED ALGORITHM  

A NIDS monitor and analyze network traffics, and use multiple sensors for detecting intrusions from internal and 

external networks. NIDS explores the information assembled by the sensors, and returns a synthesis of the input 

of the sensors to system administrator or intrusion prevention system. System administrator carries out the 

instructions organized by the intrusion detection system. In our proposed anomaly based NIDS, two algorithms 

namely principal component analysis (PCA) and Q-learning are used shown in figure 1. In this approach, firstly 

dataset dimensions are reduced by the principal component analysis and finally the anomaly is detected from the 

reduced dataset by Q-learning method. As q-learning is based on off-policy control hence, it gives an optimized 

result as an output.  

 
Figure1. Proposed Network Intrusion Detection System 
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Principal Component Analysis is used for dimension reduction and Q-learning is used as a classifier of reduced 

data. The description of PCA and Q-learning are given below.  

5.1 Principal Component Analysis (PCA) 
In our network intrusion detection system we have used PCA for dataset reduction. For testing the NIDS system 

we have used KDDCup99 dataset [15]. Initially in KDDCup99 dataset there is 41 attributes. When we apply the 

PCA on KDDCup99 dataset, it reduces 41 attributes into 26 attributes. PCA is an unsupervised feature selection 

based on multivariate statistics and its basic scheme is to search for a projection that represents the data in a best 

possible way in a least-square sense to provide dimensionality reduction. PCA is a useful statistical technique 

manly in fields such as face recognition and image compression, and is a common technique for finding patterns 

in high dimensional data. The intact focus of statistics is based on around the idea that you have this big set of 

data, and you want to analyze that set terms of the relationships between the individual points in that set [16]. 

PCA is way of identifying patterns in data, and expressing the data in such a way as to emphasize their 

similarities and differences [17][18]. 

PCA Algorithm 

          Suppose ��, ��, …�� are N×1 vectors. 

Step 1:  Calculate mean    � �  = �
� ∑ �	�	
�                     

 Step 2:  Subtract the mean   �	  = �	 − � �  

Step 3:  From the matrix   = [��, ��,……��]   (N *M matrix), then compute covariance: 

   � = �
� ∑ ����
� �� = � 

 (Sample covariance matrix, N*N, characterizes the    scatter of the data) 

 Step 4: Compute the Eigen values                    �:  �� > ��>��....... ��  

  Step 5: Compute the eigenvectors   

              �: ��,��,��,…….�� 

As C is symmetric ��,��,��,…….�� structure a basis, (i.e., any vector x or actually (x−� � ), can be written as a 

linear combination of the eigenvectors): 

   (x−� �) = ����+����+…���� = ∑ �	�	
�  �	 
Step 6: Keep only the terms corresponding to the K largest Eigen values: (dimensionality reduction step) 

            (x−� � ) = ∑ �	�	
�  �	 
What is the criterion to choose principal components? 

- To choose K, use the following criterion 

  
   ∑ ������∑ ������  = Threshold (e.g. 0.47 or 0.95) 

5.2 Q-learning Technique 

One of the most important advances in reinforcement learning was the growth of an off-policy Temporal 

Difference (TD) control algorithm known as Q-learning. It can be used to discover an optimal action-selection 

mapping, known as policy (π), for finite Markov Decision Process (MDP) [19]. It learns an action-value function 

that finally gives the expected value of taking a given action in a given state and following the optimal policy 

through agents subsequently. A history of an agent is a sequence of <state – action – reward>. When such an 

action-value function is learned, the optimal policy can be created by simply selecting the action with the highest 

value in each state. Q-learning is able to evaluate the expected utility of the available actions without requiring a 

model of the environment. It can handle problems with stochastic transitions and rewards, without requiring any 

alterations. Q-learning is an off-policy scheme that can be run on top of any approach wandering in the MDP. It 

uses the information studied to approximate the optimal function, from which one can construct the optimal 

policy. Q-learning does converge to the optimal Q function, under very mild conditions and for proofs are 

present for this [20].  

Optimal result depends on three factors i.e. initial condition (s0, a0), discount factor (0≤γ≤1) and learning rate 

(0<α≤1). Mathematically, it can be shown as: 

 !"�(#! , $!) = &1 − (!&#! , $!)) ×  ! &#! , $!)  + (!&#! , $!) × +,!"� + γ  max0
α

 ! &#!"�, $)12222222322222224567896: ;75<6  = 

 Where, &1 − (!&#! , $!))   : inverse learning rate   ! &#! , $!)             : old value (state, action)  (!&#, $)                : learning rate  ,!"�                      : Reward 

γ                            : discount factor 
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max0
α

 ! &#!"�, $)   : estimate of optimal future value 

Proposed Algorithm: 

Algorithm Anomaly Intrusion Detection 

 Input: Classified training dataset S, and   

               the set of attributes. 

 Load dataset  

Input/Define Threshold Range [0-1] 

FOR every training data 

   IF current value of >	 is nearest to neighbor   

         ?	@ => B &>C#D)   // feature id 

                Or             ?	@ <= &1 − ()>$D$#FD + ( >	  
      ELSE 

        Generate new feature id. 

   END IF 

END FOR 

The above step works as a feature reduction for the input dataset.  

Now when intrusion is available in the dataset /population then apply discrete state for it. 

FOR Attribute (all) && Tuple (all) 

          Attr (ε attribute, a finite state) 

            //for a-learning state 

         AND a (ε Attr , a finite state) B&G) =  ∑ G&$DDG, $DDG�HI)JK!!L,K!!LM�HI  &$DDG_OFP)K!!LM�HI   

    //reward 

END FOR 

Now, to check the probability of a action, that where the action should be attached (i.e. choose the next attribute).  JQ!!L  $&DDG_OFP) && JQ!!L$&GFP$G>)  

//after taking action in old attribute, lead to attr_new 

WHILE features do not reach to EOF 

   FOR each predetermined ?	@ 

      FIND 

       {   

        SDCTO = U&DDG)  

        JV = JQ!!LV &SDCTO) 
       } 

   END FOR 

Now Reward will be updated as, i=1 , = G	 +  DDG�G	"� + DDG�G	"� + ⋯ … … … … … … + DDG�G�"�  
Finding best Optimization Policy, 

FOR each pair of  $&$DDG, $SDCTO) 

  FOR all DDG&XD$DF#) 

      FOR all SDCTO 

      Y$D$#FD&$DDG, $SDCTO) = ∑ , JK!!L $SDCTO&,) + DD_OFP Z&DDG_OFP) JK!!L$SDCTO&$DDG�HI)        

      Z&$DDG) ≔ \$�]  B SDCTOY$D$#FD&$DDG, $SDCTO) 
       END FOR   

   END FOR          
END FOR 

 Remove some features have worst optimal policy. 

Now count the selected pairs of feature of the    dataset/population. 

Now assign the identification id of each feature of the new dataset/new population. 

END WHILE LOOP 

 

6.  EXPERIMENT AND RESULTS 

Test Data: The training set employed for this analysis is the “10% KDD” (kddcup_data_gz file) dataset and 

converted into excel form or in matrix form. It consists of 41 feature attributes out of which 3 are symbolic and 

38 are numeric. Hence each connection is given by 41 features set. There are 65536 sample of connection 

described in 41 dimensions, from which 39298 are normal and 26238 are attacks.  The 42nd field can be a label 
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generalized as Normal, DoS, Probing, U2R, and R2L. The training data is made up of 22 different attacks. The 

known attack types are those present in the training dataset while the novel attacks are those attacks which are 

present in the test datasets but not available in the training datasets. Generally, there are four categories of 

attacks. They are : 

DoS (denial-of-service), for example, ping- of death, syn flood, etc. 

Probe, surveillance and probing, for    example, port-scan, ping-sweep, etc. 

R2L, unauthorized access from a remote machine, for example, is guessing   password. 

U2R, unauthorized access to local super user rights by a local unprivileged user, for example, various buffer 

overflow attacks. 

Training data: 10% of training data is selected randomly from the 10% of kddcup’99 dataset. Training data 

contains half the no. of normal data and half of the abnormal data, i.e. 3600 samples for each. 

Performance Evaluation and Results 

We are emphasizing on the following performance measures which are considered to evaluate the efficiency of 

the Proposed IDS technique: 

The true positive rate (TPR) is the proportion of examples which were classified as class x, among all examples 

which truly have class x, i.e. how much part of class were captured. It is equivalent to detection rate or 

sensitivity. In case of information recovery, it is called as Recall. 

The false positive rate (FPR) , which is also known as false alarm rate is the proportion of examples which were 

classified as class x, but belong to a different class, among all examples which are not of class x. 

Precision is another information retrieval term, which is often paired with recall. It is defined as the proportion of 

examples which truly have class x among all those which were classified as class x. 

F-value combines the TPR and precision into a single value function after obtaining their harmonic mean. 

Building time is the time taken by the classifier to build the model in seconds. 

While experimenting on different threshold values in the proposed IDS technique, we got the results of the 

parameters as following: 

                   Table 1. Detection Rate by Naïve Bayes and Proposed   Technique 

 
DETECTION RATE 

Threshold Naïve Bayes (NB) Q-LEARNING 

0.16 90.9377 95.9619 

0.22 90.9697 96.4671 

0.28 91.0297 96.4991 

0.34 90.9697 96.486 

0.40 91.0086 96.4991 

0.46 91.722 96.538 

0.52 91.219 96.5991 

0.58 91.2478 96.7016 

 

Figure 2. Comparison of Detection Rate of Naïve Bayes and Proposed Technique 

Now, taking maximum absolute error as our experimental parameter, we get a better output as compared with the 
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existing Naïve Bayes method. It is given as below 

                   Table 2. Maximum Absolute Error (MAE) by Naïve Bayes and Proposed   Technique 

 MAXIMUM ABSOLUTE ERROR 

Threshold Naïve Bayes (NB) Q-LEARNING 

0.16 3.12226 2.249562 

0.22 3.154306 2.598009 

0.28 3.214294 2.620109 

0.34 3.154306 2.611017 

0.4 3.193135 2.620109 

0.46 3.356732 2.646888 

0.52 3.403621 2.66148 

0.58 3.43243 2.759713 

 

Figure3. Comparison of Maximum absolute error of Naïve Bayes and Proposed Technique 

 

7. CONCLUSION AND FUTURE WORK 

In this paper a general unsupervised (PCA) and reinforcement learning (Q-learning) methods have been used for 

classifying anomaly instance in large and complex network datasets. An explanation mechanism to explain the 

normal or anomalies results was explained. The precise approaches of the anomaly based detection systems 

learning are characterized. Based on cascading two machine learning techniques i) Principal Component 

Analysis and, ii) the Q-learning, we developed an anomaly based network intrusion detection technique. Firstly 

Principal Component Analysis (PCA) is used to reduce the features of KDDCup99. Then we have applied the 

learning algorithm, Q-learning to identify the novel and complex attacks decision space into classification 

regions; there by improving the system classification performance.Our future direction is to employ dataset as a 

tuple to this anomaly based network intrusion detection technique to increase the different measuring parameters  
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