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Abstract 

This study conducts a comprehensive analysis of machine learning models' potential in predicting heart failure 
using a dataset compiled from multiple sources across various locations. Through data preprocessing and 
analysis, significant correlations were identified between lifestyle characteristics and heart failure incidence. 
Several machine learning models, including Logistic Regression, Support Vector Machine, Random Forest, K-
nearest neighbors, Extra trees, Gradient Boosting, and CatBoost, were developed, trained, and evaluated using 
performance metrics such as accuracy, feature importance, confusion matrix, and the ROC curve. The Random 
Forest model exhibited superior performance, emphasizing its robustness and effectiveness in heart failure 
prediction. This research underscores the significance of applying machine learning to enhance predictive 
accuracy and provides key insights for future applications in clinical decision support systems, suggesting 
directions for further research in expanding the models to encompass a broader range of cardiovascular 
conditions according to individual lifestyle. 
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1. Introdution 

Amidst the continuous evolution of the global health landscape, the ongoing rise in concerns related to heart 
disease and heart failure stands out as a pressing demand within the medical community (Groenewegen et al., 
2020). Heart Failure, a condition that significantly affects the heart's ability to pump blood effectively throughout 
the body, poses a substantial challenge for both healthcare systems and patients' quality of life. Data reveals a 
growing prevalence of these conditions, underscoring the urgent need for effective prediction methods to enable 
early diagnoses and informed medical decisions. In 2019, heart failure alongside other cardiovascular diseases 
led as the primary cause of mortality worldwide, comprising approximately 85% (Who, 2019). 

The application of artificial intelligence (AI) in the context of heart failure prediction emerges as a promising 
approach (Yu et al., 2018), leveraging significant technological advances and the availability of extensive 
medical datasets. Recent statistics indicate a sharp increase in the quantity of available clinical information, 
allowing advanced machine learning algorithms to thoroughly analyze these data for relevant patterns. 
Furthermore, with the continuous application of artificial intelligence in various health-related studies, 
specifically in disease prediction, proposing its use for heart failure prediction becomes a promising and relevant 
proposition. However, it is crucial to recognize that this advancement is not without challenges, and ethical 
issues such as algorithmic bias and data privacy protection require careful consideration and heightened 
reliability, as we are dealing with the prediction of a disease. 

This scenario highlights the pressing need to understand the capabilities and limitations (Hickman et al., 2021) 
of AI tools, adapting them insightfully to clinical needs. The effective integration of these technologies will not 
only provide tangible benefits for heart failure prediction but also substantially contribute to advancements in 
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cardiac health. 

This study aims to develop machine learning models for predicting heart failure based on lifestyle-related 
characteristics using data from Kaggle (Fedesoriano, 2021). Statistical techniques and data mining methods will 
be employed to identify meaningful correlations between lifestyle factors and heart failure. Machine learning 
models will be trained and evaluated based on performance metrics to select the most effective model for 
forecasting heart failure. This introduction outlines the methodology employed, with specific objectives assigned 
to achieve the research objective. 

1. Preprocess and analyze the data collected from Kaggle, identifying meaningful correlations between 
lifestyle characteristics and the occurrence of Heart Failure, employing statistical techniques and data 
mining methods. 

2. Develop and train machine learning models to predict the probability of heart failure occurrence based on 
the most common lifestyle characteristics identified in the previous stage. 

3. Identify and compare machine learning models based on performance metrics, including accuracy, 
permutation feature, importance plot, confusion matrix (CM) (Zeng, 2020), and receiver operating 
characteristic (ROC) (Hoo et al., 2017) curve. 

4. Select the model that exhibits the highest performance metrics as the chosen model for predicting heart 
failure, based on common lifestyle characteristics in each of the cases. 

This research consists of four main sections. After the introduction, the "Related Work" section reviews the 
literature supporting this study and its connections to another research within the field. Subsequently, the 
"Methodology" section outlines the theoretical framework and methods utilized, encompassing initial data 
analysis, model development, and evaluation of machine learning models. The "Results Obtained" section 
focuses on data analysis, model interpretation, and evaluation using specific metrics. "Conclusions" summarizes 
key insights, discusses limitations, and suggests avenues for future research. Finally, the study concludes with 
"Bibliographic References". 

Some studies have explored heart disease prediction through machine learning techniques, each providing 
distinct perspectives to enhance predictive accuracy and address challenges linked to cardiovascular diseases. 

The study proposed by Hashi and Md Shahid Uz Zaman (2020), it was a study in the healthcare sector employed 
machine learning techniques to predict heart disease, comparing a traditional system to a newly proposed model 
utilizing Logistic Regression (LR) (Lavalley, 2008), K-Nearest Neighbor (KNN) (Dhanabal and Chandramatih, 
2011), Support Vector Machine (SVM) (Mammone et al., 2009), Decision Tree (DT) (Liang et al., 2021), and 
Random Forest (RF) (Cutler et al., 2012). The proposed model, enhanced through hyperparameter tuning, 
outperformed the traditional system, achieving a notable peak accuracy of 91.80%. This highlighted the 
effectiveness of the proposed approach in accurately predicting heart disease. 

The 2021 research focuses on predicting heart disease based on medical attributes using machine learning 
algorithms such as LR and KNN. The exploration of different algorithms to increase prediction accuracy 
corresponds to our objective of identifying and comparing machine learning models based on performance 
metrics, which is what the research carried out by Jindal et al. (2021) consists of. It is worth noting that the best 
result reported in this study achieved an accuracy of 87.5%. 

In 2022, the study of Shaker et al. (2022) emphasized heart health's significance, utilizing machine learning and 
deep learning (DL) (Lecun et al., 2015) techniques, especially RF, for heart failure prediction. This aligns with 
our criteria for selecting the most effective predictive model the research employed an extensive range of 
machine learning algorithms, including DL and RF, demonstrating their effectiveness in predicting heart diseases. 
The best accuracy achieved was 78.767%, utilizing DL. 

In a significant medical breakthrough in 2023, the research highlighted the importance of accurate detection and 
prediction of cardiovascular diseases, critical for correct treatment by cardiologists. The application of machine 
learning in the diagnosis of cardiovascular diseases has shown promising potential, particularly in reducing 
misdiagnoses. This innovative study developed a model using k-modes clustering with initialization to enhance 
classification accuracy. Various models including RF, DT, Multilayer Perceptron (MLP), and Extreme Gradient 
Boost (XGB) (Zhao et al., 2020) Classifier were implemented and optimized through GridSearchCV. Tested on 
an extensive dataset of 70.000 instances from Kaggle, the standout model was the Multilayer Perceptron with 
cross-validation, achieving an impressive accuracy of 87.28%. This result represents the pinnacle of the study 
desenvolved by Bhatt et al. (2023), demonstrating the efficacy of the Multilayer Perceptron in predicting 
cardiovascular diseases with the highest accuracy achieved.   

In the upcoming section, we will delve into the goals and objectives of our research, providing a comprehensive 
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overview of the specific aims we aimed to achieve throughout the study. 

 

2. Methodology 

In this section, we will address the systematic approach adopted in our study. The selected methodology is the 
Cross-Industry Standard Process for Data Mining (CRISP-DM) (Schröer et al., 2021), a robust framework that 
guides us through the stages of data exploration, understanding of the chosen problem, preprocessing, modeling, 
and evaluation. This structured method provides a clear and well-defined roadmap for our research, ensuring a 
comprehensive and effective analysis of the collected data on heart failure prediction based on lifestyle 
characteristics. 

a) Understanding the Studied Issue 

The primary objective of this research is to address heart failure based on the characteristics outlined in the 
dataset. Our main goal is to develop a reliable and accurate machine learning-based system capable of predicting 
and classifying the presence of heart failure using specific information. Identifying these patterns early through 
automated approaches can have a substantial impact on healthcare, providing timely interventions and improving 
outcomes. 

b) Data Understanding 
The dataset for heart failure prediction comprises 918 samples, obtained after excluding duplicate cases, 
originating from five distinct and independent cardiac datasets. Data collection took place at five specific 
locations: Cleveland, with 303 observations, Hungarian, with 294 observations, Switzerland, with 123 
observations, Long Beach VA, with 200 observations, and Stalog, with 270 observations. 

c) Data Preparation 
The dataset is available on Kaggle (Bojer and Meldgaard, 2021) and comprises 11 attributes: Age, Gender, Chest 
Pain Type, Resting Blood Pressure, Cholesterol, Fasting Blood Sugar, Resting Electrocardiogram Results, 
Maximum Heart Rate Achieved, Exercise-Induced Angina, Oldpeak, ST Segment Slope, and Heart Disease. The 
target variable indicates the presence or absence of heart failure. In the following topics, the variables that make 
up the data set studied will be applied. The following variables are explained regarding their meaning: 

 Age: Provides information about the patient's age in years, facilitating exploration of the relationship 
between age and the probability of cardiovascular diseases, considering age as a cardiovascular risk 
factor. 

 Gender: Attribute indicates the patient's gender, with "M" for Male and "F" for Female. Including 
this information is relevant for investigating potential differences in heart conditions between men and 
women, contributing to a more comprehensive understanding of cardiovascular health. 

 Chest pain type: ChestPainType categorized into four classes: Typical Angina (TA), Atypical Angina 
(ATA), Non-Anginal Pain (NAP), and Asymptomatic (ASY). This classification provides insights into 
symptoms associated with heart disease, contributing to more predictions that are accurate. 

 RestingBP (Resting Blood Pressure): RestingBP represents the patient's blood pressure in millimeters 
of mercury (mm Hg) and is crucial for assessing the risk of heart disease, as elevated blood pressure can 
indicate potential cardiac issues. 

 Cholesterol: The (Cholesterol) attribute indicates serum cholesterol levels measured in milligrams 
per deciliter (mg/dl). This parameter plays an important role in cardiovascular health, and its 
analysis helps identify patterns and correlations with the risk of heart disease. 

 FastingBS (Fasting Blood Sugar): FastingBS categorizes fasting glucose levels as one if above 120 
mg/dl and zero otherwise. This information provides insights into the patient's metabolic health, relating 
to the risk of heart disease, especially in cases of elevated fasting sugar. 

 RestingECG (Resting Electrocardiogram): Results RestingECG represent the condition of the 
electrocardiogram, categorized as Normal, ST (indicating abnormalities in ST-T wave), and LVH 
(indicating probable or definite left ventricular hypertrophy). This classification contributes to the 
detection of anomalies and potential cardiac conditions. 

 MaxHR (Maximum Heart Rate Achieved): Indicates the maximum heart rate during activity, 
providing information about the patient's cardiovascular fitness. 

 ExerciseAngina (Exercise-Induced Angina): Categorizes whether the patient experiences angina 
during exercise, with "Y" indicating yes and "N" indicating no. Information on angina during exercise 
helps identify patients who may experience chest pain or discomfort during physical activity, aiding in 
the assessment of exercise-related cardiac stress. 
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 ST_Slope (ST Segment Slope): Characterizes the slope of the ST segment during peak exercise, 
contributing to the evaluation of electrocardiographic changes associated with heart disease. 

 Oldpeak: Represents the depression in the ST segment of the electrocardiogram during exercise, 
providing data on the extent of this depression as an indicator of potential cardiac issues. 

 Heart Disease: The output class, HeartDisease, is binary, indicating the presence (1) or absence (0) of 
heart disease. This variable is essential for predicting and classifying cardiac conditions in the dataset. 

 

Figure 1. Class Distribution 

By examining the distribution of classes in this variable, we observe 508 instances indicating the presence of 
heart disease and 410 instances indicating its absence, as shown in Figure 1. This division provides a precise 
overview of how the samples are distributed and balanced between the two categories, crucial for assessing the 
dataset's balance in terms of the presence or absence of heart disease. This information plays an important role in 
conducting subsequent analyses and developing machine learning models, ensuring an informed and effective 
approach to predicting heart conditions. The pivotal output variable in our study is "HeartDisease," possessing a 
binary nature that signifies the presence or absence of heart disease. In this representation, a value of "1" 
indicates the presence of heart disease, while a value of "0" denotes its absence. This variable stands as the 
central focus of our objectives, serving as the primary factor for predicting and classifying heart failure within 
our dataset. 

Proper data preparation is essential to ensure the quality and reliability of results in any study. In the case of the 
dataset used in our research, made available on the Kaggle platform, the original authors have already performed 
significant pre-processing. Specifically, the balancing of the dataset was achieved by removing duplicate entries. 
This step is fundamental in mitigating the risk of bias in the developed models, helping to avoid the challenges 
commonly associated with class imbalances. Such a measure ensures a more equitable basis, as demonstrated in 
Figure 1, which shows an instance of 508 cases where heart disease was present and another 410 instances where 
heart disease was absent. Therefore, it can be observed that there is an increase in the reliability of the 
information generated from the study. 

The dataset was divided into 80% for training and 20% for testing, following a common practice in the literature 
(Agarap, 2018). However, other proportions were also explored, such as 70% and 30%, and 75% and 15%. After 
testing and analysis, it was found that the division of 80% and 20% yielded the best results in terms of model 
performance metrics. This data splitting approach proved to be most effective for our specific dataset, ensuring 
an adequate distribution for training and testing the models. 

The following balancing techniques were tested, such as SMOTE (Synthetic Minority Over-sampling Technique) 
(Ileberi et al., 2021), UnderSampling, and OverSampling techniques (Mohammed et al., 2020), despite the low 
imbalance between classes However, even with the application of these techniques, there was no improvement in 
the performance metrics of the models. These approaches are common for handling imbalanced datasets, where 
the number of examples in one class is significantly lower than in another. SMOTE creates synthetic examples of 
the minority class, UnderSampling reduces the number of examples in the majority class, while OverSampling 
increases the number of examples in the minority class. It is worth noting that these balancing techniques were 
applied only to the training data. Through the application of these techniques, the aim is to achieve a more 
balanced distribution of data, contributing to the robustness and effectiveness of prediction models. 

Subsequently, the ordinal coding technique was applied to convert nominal variables into categorical ones 
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(Rosario et al., 2004), providing a more suitable representation for subsequent analyses and facilitating model 
analysis. In addition, we included data normalization using the MinMaxScaler (Patro and Sahu, 2015) function 
to standardize the scales of the variables and enhance the performance of the models during the training phase. 
Normalization is important because it helps prevent features with vastly different magnitudes from dominating 
model training, ensuring faster and more stable convergence. Additionally, we tested the StandartScaler (Aldi et 
al., 2023) function; however, due to the smaller size of the dataset, MinMaxScaler yielded better results in terms 
of performance metrics. 

The correlation matrix analysis between the selected variables and the target variable “HeartDisease” reveals 
significant insights into the existing relationships. The variable "Age" shows a moderate positive correlation 
(0.28) with the presence of heart disease, indicating that age may slightly influence the likelihood of the 
condition. The feature "Sex" presents a positive correlation of (0.31), suggesting a slightly stronger influence of 
gender on the predisposition to heart disease. 

“ChestPainType” demonstrates a notable negative correlation (-0.39), indicating an inverse relationship with the 
presence of heart disease. This pattern may reflect different chest pain manifestations in patients with and 
without cardiac conditions. The variable “MaxHR” exhibits a substantial negative correlation (-0.40), suggesting 
an inverse relationship between the maximum heart rate reached during activity and the presence of heart disease. 

The presence of exercise-induced angina “ExerciseAngina” reveals a significant positive correlation (0.49), 
indicating that the occurrence of angina during exercise is associated with a higher likelihood of heart disease. 
Additionally, the depression in the ST segment during exercise Oldpeak shows a strong positive correlation 
(0.40), suggesting that greater depression may be related to the presence of heart disease. 

The variable ST_Slope exhibits a considerable negative correlation (-0.56), indicating an inverse relationship 
between the ST segment slope during peak exercise and the presence of heart disease. This finding underscores 
the importance of these parameters in assessing potential cardiac conditions. 

The correlation matrix, as shown in Figure 2, is an essential tool in statistical analysis, providing a systematic 
view of linear relationships between variables. Its interpretation, ranging from -1 to 1, allows us to understand 
the strength and direction of relationships between attributes and the target variable, which in our case is the 
presence or absence of Heart Disease. Thus, it plays an elementary role in identifying patterns and relationships 
among the dataset attributes, directly influencing decisions related to predictive modeling (Bun et al., 2017). 

 
Figure 2. Class Correlation 

As insights from the correlation matrix analysis, depicted in Figure 2, provide a strong foundation for further 
exploration and enhancement of predictive modeling techniques. By examining correlation coefficients, we can 
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identify variables strongly linked to the target variable, indicating their significant influence on heart failure 
occurrence. Leveraging this information, we can prioritize influential variables during feature selection, focusing 
model training efforts on attributes with the most substantial impact. Understanding interrelationships between 
predictor variables can guide feature engineering efforts, enabling the creation of new informative features 
derived from correlated attributes. Identifying variables with low correlations with the target variable allows 
filtering out irrelevant features, simplifying model complexity and potentially improving generalization 
performance. The correlation matrix serves as a valuable resource for refining predictive models, offering 
insights into variable importance, feature selection, and feature engineering strategies to enhance model 
performance and predictive accuracy. 

d) Data Modeling 

In this study, we utilized a variety of prediction models, including LR, SVM, ET, Cat Boost (CTB) (Saber et al., 
2022), RF, Gradient Boost Classifier (Dorogush et al., 2018), and KNN. The choice of these models for the work 
stems from them being some of the classic models (Faouzi and Colliot, 2023) used for problem solving in the 
healthcare domain, as well as being models with which we had a greater understanding of their functioning. 
Initially, 11 models were tested, and in this study, only the top seven based on the analyzed performance metrics 
were considered. 

In this study, we utilized a variety of prediction models, including LR, SVM, ET, Cat Boost (CTB) (Saber et al., 
2022), RF, Gradient Boost Classifier (Dorogush et al., 2018), and KNN. We comprehensively evaluated these 
models, employing techniques such as modifying the default values set in the scikit-learn library (Hao and Ho, 
2019). Furthermore, we explored the use of different sets of hyperparameters (Weerts et al., 2020) through the 
GridSearch technique. GridSearch is a method used to optimize the hyperparameters of a machine learning 
model, characterized as an exhaustive search method that systematically evaluates various combinations of 
hyperparameters, the betters hyperparameters explored in the search were represented in Table 1. 

In the hyperparameter tuning process for the machine learning models, an empirical approach was employed, 
where various values were iteratively tested and refined. This method combined systematic experimentation with 
certain identified values, such as increasing or decreasing values, and more exploratory exploration of ranges 
near zero or specific values. The final selection of hyperparameters was primarily based on observed 
improvements in model accuracy during validation. While the methodology did not follow a strictly 
deterministic pattern, the search for continuous improvements in model accuracy guided the decisions 
throughout the experimentation process. 

The aim is to find the configuration that yields the best performance of the model. This detailed strategy seeks to 
significantly improve accuracy during both the training and testing phases of the models. 

e) Evaluation 

In the model evaluation stage, we analyzed various criteria to determine the effectiveness in predicting heart 
failure. The metrics employed for evaluation included training and testing accuracy, confusion matrix, and ROC 
curve. These metrics provide a more detailed view of the models' performance, assessing their ability to correctly 
classify instances and discriminate between classes. 

In the model evaluation stage, we analyzed various criteria to determine the effectiveness in predicting heart 
failure. The metrics employed for evaluation included training and testing accuracy, confusion matrix, and ROC 
curve. These metrics provide a more detailed view of the models' performance, assessing their ability to correctly 
classify instances and discriminate between classes. 

The role of training and testing accuracy is crucial in this context. Training accuracy reflects the model's 
performance on the data used for training, while testing accuracy estimates of how well the model generalizes to 
data not used during training. both metrics are necessary to evaluate the model's ability to effectively learn 
patterns in the data and apply this knowledge to new observations. Therefore, when interpreting the results, it is 
essential to consider not only training accuracy but also testing accuracy, ensuring a comprehensive and more 
reliable assessment of the model's performance and avoiding potential issues such as overfitting (Ying, 2019). 

A detailed analysis of the confusion matrix provided valuable insights into the models' performance in different 
scenarios, displaying their ability to predict true positives and true negatives, a key metric in model selection. 

Additionally, when evaluating the ROC curve, considering sensitivity, the learning curve, and specificity, the 
curve demonstrated a favorable balance between true and false positives, highlighting its efficiency in 
discriminating between classes. 

In the next section, we will present the results regarding the models and their evaluation criteria, which are of 
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fundamental importance to ensure reliability related to the model. 

Table 1. Models with the best hyperparameters 
Model Hyperparameter Tested Values Best Value 
Logistic Regression Regularization 

value 
0.01,0.1,1,10,100 100 

 Penalty L1,L2 L2 
 Cross validation 5,6,7,8,9,10 5 

Support Vector Machine Regularization 
value 

0.1, 1, 10 10 

Extra Trees N_estimators 100, 200, 300 100 
 Max_deph None, 100, 200, 258, None 
 Min_samples_splits 2, 5, 10 5 
 Min_samples_leaf 1, 2, 4 2 
 Max_features Sqrt, Log2, 0.2 Sqrt 

Random Forest N_estimators 100, 200, 300 100 
 Max_deph None, 100, 200, 258, None 
 Min_samples_splits 2, 5, 10 5 
 Min_samples_leaf 1, 2, 4 2 
 Max_features Sqrt, Log2, 0.2 Sqrt 

Cat Boost Learning_rate 0.01, 0.1, 0.2 0.2 
 Deph 4, 6, 8 6 
 N_estimators 100, 200, 300 100 
 Sub_sample 0.8, 0.9, 1.0 1 
 Cross validation 5,6,7,8,9,10 5 

Gradient Boost Learning_rate 0.01, 0.1, 0.2 0.1 
 Max_deph 6, 8, 10 6 
 N_estimators 50, 100, 200 50, 100, 200 

K-Nearest Neighbors N_neighbors 2, 5, 7, 9 9 
 weights Uniform, Distance Distance 
 metric Euclidean, Manhattan Manhattan 
 

3. Discussion and Results  

In this section, we proceed with an analysis of the performance of machine learning models, starting with the 
evaluation of relevant metrics such as accuracy on test and training data, as well as confusion matrices and the 
learning rate of the models. This approach allowed us to gain insights into the efficiency with which the models 
adapt and generalize from the provided data. The performance of these models was further improved through 
hyperparameter optimization, which fine-tuned their settings to achieve optimal results. We continued with a 
review of the effectiveness of a variety of models, including ensemble models like RF and GB, which achieved 
excellent accuracy in model testing, and tree-based models like DT and ET, focusing on their application in 
predicting heart failure. We observed that models such as KNN and GB excelled, achieving notable training 
accuracies, and the analysis was further enriched by considering models like CB and SVM, providing a broad 
perspective on the available options. This detailed analysis underlines the importance of a careful selection of 
models, aiming to enhance precision in predicting heart failure, thereby extending the scope of our study. 

An analysis of Table 2 reveals the training and test accuracies of each tested model. None of the models 
exhibited higher training accuracy than test accuracy, effectively avoiding overfitting. This demonstrates that the 
models can generalize their predictive capabilities to unseen data, a critical factor in their overall performance.  

A deeper analysis of the Table 2 highlights the models' performance, particularly focusing on the test accuracies. 
CB and RF models stand out with the highest test accuracies of 91.848% and 90.217%, respectively, indicating 
their superior ability to generalize and make accurate predictions on unseen data. On the lower end, LR and GB 
show the lowest test accuracies of 84.239% and 87.500%, suggesting these models, while still effective, might 
benefit from further tuning or may inherently be less suited to the dataset's specific challenges compared to their 
counterparts 
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Table 2. Model Performance Comparison 

MODEL TRAIN ACCURACY TEST ACCURACY 

Logistic Regression 86.104% 84.239% 

Support Vector Machine 90.736% 88.587% 

Extra Trees 94.112% 88.043% 

Random Forest 96.458% 90.217% 

Cat Boost 98.043% 91.848% 

Gradient Boost 100.000% 87.500% 

K-Nearest Neighbors 100.000% 88.043% 

 

In a confusion matrix, "true positives" (TP) represent cases that are correctly identified as positive, while "true 
negatives" (TN) denote cases that are accurately identified as negative. Conversely, "false positives" (FP) occur 
when negative cases are incorrectly labeled as positive, and "false negatives" (FN) arise when positive cases are 
mistakenly labeled as negative. TP and TN reflect the model's accurate predictions, serving as indicators of its 
effectiveness in identifying each class correctly. On the other hand, FP and FN represent errors in prediction, 
highlighting instances where the model fails to distinguish accurately between classes. These metrics are crucial 
for evaluating a model's performance, as they provide insight into not only the model's ability to identify true 
cases of each class but also its propensity to misclassify them. A model's performance is considered more robust 
and reliable if it achieves a high number of TP and TN with minimal FP and FN, indicating a strong capability in 
classifying cases correctly across both positive and negative classes. This detailed breakdown helps in 
understanding the model's strengths and weaknesses, guiding further improvements and adjustments to enhance 
its predictive accuracy and reliability in distinguishing between different classes. 

In Figure 3, the confusion matrix of the LR model in binary classification contexts offers an insightful analysis 
of its performance. The matrix shows 68 instances accurately classified as TN, indicating the model's strong 
capability in correctly identifying negative instances. Despite the presence of 9 FN and 20 FP, which highlight 
errors in misclassifying positive instances as negative and failing to recognize some negative instances 
respectively, these numbers do not drastically affect the model's overall effectiveness. The 87 TP further 
demonstrate the model's competence in accurately identifying positive instances. These outcomes emphasize the 
LR model's ability to effectively differentiate between classes, underlining its resilience and precision in 
categorizing various groups. 
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Figure 3. Confusion Matrix LR 

The Figure 4 depicts the permutation importance graph for the LR model, indicating that the “ST_slope” feature, 
which corresponds to the slope of the ST segment on an electrocardiogram during exercise, is the most 
influential in the model's accuracy, standing out as the most important characteristic. In contrast, “Age, 
representing the patients' age, shows the least impact, being the least significant feature. This implies that, within 
the context of your model, variations in the ST slope are crucial for outcome prediction, while variations in 
patient age are comparatively less significant. 

 

Figure 4. Permutation Importance LR 

In Figure 5, the confusion matrix of the SVM model in binary classification contexts presents a comprehensive 
evaluation of its performance. With 70 instances accurately classified as TN, the model exhibits exceptional 
effectiveness in correctly identifying negative instances. Despite encountering 7 FN and 14 FP, indicating errors 
in misclassifying positive instances as negative and missing some negative instances respectively, these 
discrepancies do not markedly detract from the model's overall performance. The presence of 93 TP further 
affirms the model's proficiency in accurately identifying positive instances. These findings underscore the SVM 
model's adeptness at effectively differentiating between classes, highlighting its durability and precision in the 
prediction of diverse categories. 
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Figure 5. Confusion Matrix SVM 

 

Figure 6. Permutation Importance SVM 

The Figure 6 presents the permutation importance graph for the Support Vector Machine (SVM) model. This 
graph indicates that the ST_slope feature, denoting the slope of the ST segment on an electrocardiogram during 
exercise, holds the highest importance in the model's predictive accuracy. It stands out as the critical 
characteristic for the model's performance. On the other end of the spectrum, Age, which represents the patients' 
age, appears to have the least influence on the model's accuracy, making it the least significant feature. The 
implication here is that in the SVM model's predictions, the variations in the ST segment's slope during exercise 
are essential for accurate outcome prediction, while patient age has a minimal effect on the model's performance. 

In Figure 7, the confusion matrix of the ET model in binary classification contexts provides a detailed view of its 
performance. With 68 instances correctly classified as TN, the model demonstrates high effectiveness in 
accurately identifying negative instances. Although there are 9 FN and 13 FP, representing errors in classifying 
negative instances as negative and vice versa, these figures do not significantly compromise the overall 
efficiency of the model. This is further evidenced by the 94 TP, showcasing the model's ability to correctly 
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identify positive instances. Such results highlight the potential of the ET model to distinguish between classes 
effectively, underscoring its robustness and accuracy in predicting different categories. 

 

Figure 7. Confusion Matrix ET 

Figure 8 corresponds to the permutation importance graph provided for the ET model. It shows that the 
“ST_slope” feature, representing the slope of the ST segment on an electrocardiogram during exercise, is the 
most influential in the model's accuracy. This feature emerges as the most critical factor for the model's 
predictions. In contrast, “Age”, which denotes the patient’s age, has the least influence on the model's accuracy, 
marking it as the least significant feature. This suggests that within the context of the ET model, changes in the 
ST slope are vital for accurate outcome prediction, while the age of the patients does not significantly affect the 
model's performance. 

 

Figure 8. Permutation Importance ET 

In Figure 9, the confusion matrix of the RF model in binary classification scenarios offers a nuanced 
understanding of its performance. With 68 instances accurately identified as TN, the model exhibits substantial 
efficacy in correctly identifying positive instances. Despite the presence of 9 FN and 11 FP, which indicate errors 
in mistakenly classifying positives instances as negative and overlooking some negative instances, respectively, 
these numbers do not drastically undermine the model's overall performance. The 96 TP further highlight the 
model's capability in accurately recognizing positive instances. These outcomes emphasize the RF model's 
competence in effectively differentiating between classes, illustrating its strength and precision in the prediction 
of diverse categories. 
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Figure 9. Confusion Matrix RF 

Figure 10 presents the permutation importance graph for the RF model, illustrating that the “ST_slope” feature, 
which corresponds to the slope of the ST segment on an electrocardiogram during exercise, holds the highest 
importance in the model's accuracy. It is identified as the most critical characteristic for the model's predictions. 
On the other end of the scale, “Sex”, which denotes the patients' age, has the least impact on the model's 
accuracy, rendering it the least significant feature. This indicates that in the RF model, variations in the ST slope 
are essential for accurate outcome prediction, whereas variations in patient age have a relatively minor influence. 

 

Figure 10. Permutation Importance RF 

In Figure 11, the confusion matrix of the CB model in binary classification scenarios shows its performance. The 
matrix indicates that 65 instances were correctly classified as true negatives, demonstrating the model's 
effectiveness in identifying negative instances. However, there were 12 FN and 11 FP, indicating errors in 
classifying some positive instances as negative and some negative instances as positive, respectively. Despite 
these errors, the overall performance of the model remains solid, as evidenced by the 96 TP, which highlight the 
model's strong capability in correctly identifying positive instances. These results highlight the CB model's 
ability to effectively differentiate between classes, demonstrating its precision in predicting diverse categories. 



Research on Humanities and Social Sciences                                                                                                                                    www.iiste.org 

ISSN 2224-5766 (Paper)   ISSN 2225-0484 (Online)  

Vol.14, No.6, 2024 

 

13 

 

Figure 11. Confusion Matrix CB 

Based on the permutation importance the Figure 12 graph for the CB model that you provided, it can be deduced 
that “ST_slope” emerges as the feature with the highest impact on the model's accuracy. This implies that the 
slope of the ST segment on an electrocardiogram during exercise is the most significant predictor within this 
model. Conversely, “Age” appears to have the least impact on the model's predictions, suggesting that patient 
age is the least important feature in the context of the CB model for outcome prediction. This distinction 
highlights the value of the ST segment's behavior during exercise as a critical factor in the CB model, 
overshadowing the relevance of age in this analysis. 

 

Figure 12. Permutation Importance CB 
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Figure 13. Confusion Matrix GB 

In Figure 13, the confusion matrix of the GB model in binary classification scenarios is analyzed to assess its 
performance. The matrix reveals that 68 instances were correctly classified as TN, showcasing the model's 
effectiveness in identifying negative instances. However, there were 9 FN and 17 FP, indicating instances where 
positive cases were incorrectly marked as negative and negative cases as positive, respectively. Despite these 
misclassifications, the model's overall performance remains commendable, highlighted by the 90 TP which 
underscore the model's ability to correctly recognize positive instances. These results demonstrate the GB 
model's proficiency in distinguishing between classes accurately, showing its capability and precision in 
handling a variety of categories. 

The permutation importance graph for the GB model, as illustrated in Figure 14, highlights that the “ST_slope” 
attribute is the most critical in determining the model's precision. This attribute corresponds to the slope of the 
ST segment observed in an electrocardiogram while a patient exercises and is identified as the predominant 
factor influencing the model's predictive power. In stark contrast, the “Sex” attribute, which denotes the age of 
the patients, is identified with minimal impact, ranking as the feature with the least significance. This contrast 
suggests that for the GB model's predictive accuracy, the variation in the ST segment's slope is imperative, 
whereas the age of the patients plays a minimal role in the predictions. 

 
Figure 14. Permutation Importance GB 

In Figure 15, the confusion matrix of the KNN model in binary classification scenarios presents a clear view of 
its effectiveness. The matrix shows that 68 instances were correctly identified as TN, indicating the model's 
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efficiency in recognizing negative instances accurately. However, it also includes 9 FN and 13 FP, reflecting 
mistakes in classifying some positive instances as negative and some negative instances as positive, respectively. 
Despite these classification errors, the model's overall performance is strong, as evidenced by the 94 TP, which 
demonstrate the model's skill in correctly identifying positive instances. These results validate the KNN model's 
ability to accurately differentiate between classes, showcasing its robustness and precision in categorizing 
diverse groups. 

 

Figure 15. Confusion Matrix KNN 

The permutation importance graph for the KNN model, shown in Figure 16, demonstrates that the 
“ST_slope”feature is paramount in affecting the model's accuracy. This feature, indicative of the ST segment's 
slope on an electrocardiogram during physical exertion, is the most significant determinant for the model's 
predictions. In marked contrast, the 'Age' feature, indicative of the patients' age, exerts the smallest influence on 
the model's accuracy, establishing it as the feature with the least impact. These distinctions suggest that for the 
KNN model's ability to predict outcomes accurately, the fluctuation in the ST segment's slope is of considerable 
importance, whereas the patients' age has a comparatively negligible effect. 

 
Figure 16. Permutation Importance KNN 

The ROC curve represented in Figure 17 is a graphical representation that illustrates the diagnostic ability of a 
binary classifier system as its discrimination threshold is varied. The curve is created by plotting the True 
Positive Rate TPR against the FPR at various threshold settings. The Area under the Curve (AUC) (Marzban, 
2004) provides a single measure of overall performance of the classifier; the closer the AUC is to 1, the better the 
model is at distinguishing between the two classes. 
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Figure 17. Curve Roc of Models 

The ROC curve for the RF classifier shows an AUC of 0.89, which suggests that the model has a high capability 
in discriminating between the positive and negative classes. The RF curve is closer to the top-left corner of the 
plot, indicating a lower rate of false positives for any given true positive rate. 

For the KNN model, the ROC curve displays an AUC of 0.88. This is slightly less than the RF model but still 
denotes a high discriminatory power. The KNN curve follows closely to the RF, suggesting similar performance 
characteristics, especially in the middle range of the FPR. 

The GB model's ROC curve, with an AUC of 0.86, indicates that it has a good classification performance, albeit 
slightly lower than RF and KNN. The GB curve shows that the model performs well, particularly as the FPR 
begins to increase, which is indicative of its ability to maintain a relatively high TPR even as the number of false 
positives increases. 

The ET classifier exhibits an ROC curve with an AUC of 0.88, on par with the KNN model. This indicates a high 
level of classification accuracy similar to that of KNN. The ET curve, much like the KNN has, maintains a close 
proximity to the top-left corner, which is desirable in an ROC curve. 

The CB classifier stands out with an AUC of 0.49, which is significantly lower than the other models and 
suggests that the model is performing no better than random chance at distinguishing between the positive and 
negative classes. This is a critical point of concern, as it might indicate issues with model training, feature 
selection, or data quality. 

The Logistic LR model has an ROC curve with an AUC of 0.85, which suggests a good predictive performance 
with a strong ability to classify the positive and negative instances correctly. The LR curve, while not as high as 
RF or KNN, still indicates a model that performs well at most threshold levels. 

Lastly, the SVC ROC curve, with an AUC of 0.89, is indicative of excellent performance, equivalent to the RF 
model. The SVC curve rises sharply and maintains a high TPR across most levels of FPR, which shows that the 
model has a strong discriminative power. 

Each of these ROC curves provides valuable insights into the performance of the models, allowing for a 
comparison not just of the overall accuracy via the AUC but also of the behavior of the models at different 
thresholds, which can be crucial for decision-making processes in a clinical setting. 

The present study employed a comprehensive statistical analysis to assess the distributions of seven distinct 
populations in relation to 30 paired samples each. The results indicated a significant rejection of the null 
hypothesis (H0) that the CTB, RF, GB, ET, KNN, and LR populations follow a normal distribution (p=0.000), 
suggesting that not all populations are normal. 
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Figure 18. Statistical differences between the tested models. 

Given the heterogeneity of the populations and the presence of non-normal distributions, the non-parametric 
Friedman test was chosen as an omnibus test to identify possible significant differences in the medians of the 
populations. Subsequently, the Nemenyi test was applied as a post-hoc test to determine which differences were 
statistically relevant. The results revealed a statistically significant difference between the medians of the 
populations (p=0.000). 

We detailed the medians (MD), median absolute deviation (MAD), and mean rank (MR) for each population, 
providing specific information about CTB (MD=1.000+-0.050, MAD=0.000, MR=6.935), RF (MD=2.000+-
0.500, MAD=0.500, MR=5.726), SVC (MD=3.000+-0.500, MAD=0.000, MR=5.323), GB (MD=4.500+-0.500, 
MAD=0.500, MR=3.500), ET (MD=4.700+-0.500, MAD=0.700, MR=3.306), KNN (MD=6.000+-0.000, 
MAD=0.000, MR=2.129), and LR (MD=7.000+-0.000, MAD=0.000, MR=1.081). 

Based on the Nemenyi test (Pereira et al., 2015), we inferred that there are no significant differences within the 
CTB, RF, and SVC groups; GB, ET, and KNN groups; KNN and LR groups. However, all other comparisons 
between populations revealed statistically significant differences. 

As shown in Figure 18, these results underscore the importance of the appropriate choice of statistical methods 
and indicate notable divergences in distributions among the studied populations. These findings contribute to a 
deeper understanding of variability between groups, providing valuable insights for future statistical analyses 
and clinical interpretations. 

In the following section, we will enter the conclusion, where we will consolidate the results obtained regarding 
the models and their evaluation criteria presented in the results section. 

In the following section, we will enter the conclusion, where we will consolidate the results obtained regarding 
the models and their evaluation criteria presented in the results section. 

 

4. Conclusion 

heart failure prediction using machine learning models. We delve into not only the results achieved by the 
various models employed but also essential considerations regarding limitations, ethical considerations, and 
future perspectives. This analysis aims to provide a comprehensive synthesis of the study, highlighting 
significant contributions, and outlining areas that warrant further attention in subsequent research. 

In the culmination of this research, we successfully achieved the objectives and goals outlined at the inception of 
the study. The pursuit of developing machine learning models capable of predicting the occurrence of heart 
failure based on lifestyle-related characteristics has been fully realized. Initially, a detailed analysis of the 
Kaggle-collected dataset was conducted, unveiling significant correlations between lifestyle features and the 
incidence of heart failure through statistical techniques and data mining methods. Subsequently, we proceeded 
with the development and training of machine learning models, focusing on predicting the probability of heart 
failure occurrence based on the most common characteristics identified in the preceding stage. The meticulous 
identification and comparison of models, assessing performance metrics such as accuracy, permutation feature 
importance plot, Confusion Matrix, and ROC Curve, enabled us to select the model with the most promising 
results for heart failure prediction. 

When comparing the results obtained in this study with the findings in related works, significant distinctiveness 
highlighting the uniqueness of this research is observed. In contrast to approaches employing neural networks, 
we opted for traditional models such as RF and LR, aiming for superior computational efficiency translated into 
reduced processing time and resource consumption. This strategic choice, besides enabling a more accessible 
implementation, did not compromise accuracy, as a test precision close to the best accuracies observed in related 
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works was achieved, despite the limited quantity of data and the distribution of variables across diverse locations. 
Additionally, a noteworthy difference lies in the execution of statistical tests to assess the presence of significant 
differences between models. This more detailed approach provided robust statistical validation to the conclusions, 
imparting greater reliability to the achieved results. Moreover, it is emphasized that this study encompassed a 
broader variety of machine learning models, expanding the scope of the research and contributing to a more 
comprehensive understanding of heart failure prediction compared to some previous studies in the field. 

Despite the promising outcomes achieved by the Random Forest (RF) model, along with SVM and CTB, in 
predicting heart failure through the analysis of lifestyle-related characteristics, an inherent limitation of this study 
lies in its primarily theoretical nature. The models were developed, trained, and tested within a controlled, 
simulated environment, relying on datasets that, although comprehensive, do not fully encapsulate the 
complexities and variabilities of real-world clinical scenarios. This theoretical foundation, while essential for 
initial exploration and understanding, may not accurately predict the effectiveness and applicability of the 
models when deployed in actual healthcare settings. The controlled environment of the study does not account 
for the unpredictable nature of patient responses, the variability of clinical conditions, or the potential for 
unforeseen factors that could influence the predictive accuracy of the models. Therefore, the transition from a 
theoretical model to practical application in clinical settings necessitates further empirical research, including 
pilot studies and clinical trials, to validate the models' efficacy, adaptability, and reliability in real-world 
scenarios. This step is crucial for ensuring that the predictive models can truly enhance clinical decision-making, 
improve patient outcomes, and contribute effectively to the management and prevention of heart failure. 

A notable limitation arises from the relatively small number of cases in our dataset. The limited quantity of 
instances may impact the robustness and generalizability of the models, highlighting the need for cautious 
interpretation and consideration of this constraint (Xu et al., 2023). 

A consideration that serves as a limitation of this study is the increased computational resource usage stemming 
from hyperparameter optimization. When employing exhaustive search methods such as GridSearch, or 
stochastic methods like RandomSearch, to enhance model performance, multiple trainings with various 
hyperparameter sets are required. Each iteration demands intensive processing, raising the need for CPU time, 
memory, and potentially even GPU resources, depending on the complexity of the data and models. This 
requirement can lead to prolonged training processes and increased consumption of energy and other 
computational resources, which results in higher operational costs. Thus, while hyperparameter optimization is 
crucial for achieving desired accuracy, it also imposes significant considerations regarding computational 
efficiency and the sustainability of the utilized resources. 

While there are common concerns regarding the reliability of datasets collected from online sources such as 
Kaggle (Miller et al., 2022), it is important to acknowledge the benefits of a dataset formed from the merging of 
databases from different locations. Contrary to the limitations of datasets originating from a single region, which 
can be highly biased and unrepresentative, the amalgamation of data from five distinct locations can indeed 
enrich the research, offering a more holistic view and mitigating regional biases. This enhances the models' 
generalizability to broader populations. Nevertheless, the predictive capability of the study may still be affected 
by the availability and accuracy of lifestyle-related data, which need to be comprehensive enough to encompass 
all relevant factors affecting heart failure. 

The chosen machine learning models and their predictive performance are subject to the specific characteristics 
and patterns present in the dataset, potentially limiting the applicability of the models to diverse populations or 
datasets with distinct features. 

Moreover, it is important to emphasize that the effectiveness of this study may not translate in the same manner 
to other diseases (Oakden-Rayner et al., 2020), even within the group of heart diseases, due to specific 
characteristics and distinct mechanisms of each condition. Therefore, the generalization of results to different 
clinical contexts should be approached with caution. Highlighting the need for careful interpretation and 
consideration of potential limitations. 

The future applications of the machine learning models developed to predict heart failure can extend beyond the 
scope of the current study. One potential application involves integrating predictive models into clinical decision 
support systems. By incorporating these models into healthcare practices, medical professionals can benefit from 
automated risk assessments, aiding in early detection and personalized treatment strategies for individuals at risk 
of heart failure (Dalal, 2020). 

Moreover, the models developed in this study could serve as a foundation for broader predictions of 
cardiovascular health. Expanding the scope to include a variety of cardiovascular conditions and related lifestyle 
factors can enhance the utility of predictive models, providing a comprehensive tool for assessing overall heart 
health. 
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Possible future research directions include investigating the impact of lifestyle factors and additional clinical 
variables on the predictive accuracy of the models. Exploring diverse datasets from different demographic 
groups and geographic regions would contribute to the generalization and robustness of the models, making 
them applicable to a broader population. 

Furthermore, there is potential for collaborative efforts among data scientists, healthcare professionals, and 
policymakers to implement these predictive models in preventive health initiatives. By identifying individuals at 
high risk of heart failure, interventions and lifestyle modifications can be targeted, potentially reducing the 
overall burden of cardiovascular diseases on healthcare systems. 

In conclusion, the developed machine learning models have the potential for practical applications in clinical 
settings and public health initiatives. Future efforts can focus on refining and expanding these models to address 
a wider range of cardiovascular conditions, increase predictive accuracy, and facilitate their integration into real-
world healthcare practices. 

In conclusion, the three primary models RF, SVM, and CTB achieved superior results in the evaluated metrics, 
encompassing testing accuracy, training accuracy, confusion matrix, and AUC. It is noteworthy that there exists 
no statistically significant difference between these top-performing models and the remaining ones in the 
assessment. Moreover, among the three leading models, RF exhibited a slightly superior performance, 
establishing itself as the most effective choice based on the comprehensive evaluation of the metrics. 

Although the Random Forest RF model did not achieve the second-highest test accuracy, it excelled with one of 
the best AUC, the most favorable confusion matrix, and outstanding results in statistical tests. These aspects 
underscore the RF's robustness, not just in classification accuracy but also in its ability to balance sensitivity and 
specificity, as well as maintain consistent performance across different testing conditions. 
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