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Abstract 

This study examined the relationship between portfolio return volatility and the volatility of stock returns using 

wavelet analysis on the Tehran Stock Exchange The data for this study from 58 companies member of the 

Tehran Stock Exchange, the pharmaceutical, food and automotive cluster sampling method in the period 2008-

2013 using the  Novin software, Tadbir Pardaz software, and stock sites such as www.rdis.ir, through calculating 

portfolio return volatility and the volatility of stock returns have been collected  , and Using wavelet analysis 

tools in MATLAB software was evaluated. .The results show that, in the short and medium term than long-term 

relationship between stock returns and the level portfolio return is so severe that the stock market in the short and 

medium term is more efficient than in the long run.  
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• Introduction 

Today, investing is a major element of economic activity and one of the requirements to progress in any society 

is investment; investors seek to invest their funds in where gives the highest returns and few signs of risk. Any 

investor also consider to several important factors, most notably are the return of investment, the expected return 

of the investment. Among many cases of investment (suppose their risk has been proved) the investor usually 

chooses the case that will have to be more efficient. The return that an investor would consider is only a forecast 

of future realreturns.Therefore, it is concluded that the anticipation of return on investment is very important and 

every investor, to predict the outcome, considers several factors (Hamrita, M.E., & Trifi,2011).Harvey (1995) 

reports that emerging markets have high average returns, low overall volatility, low exposure to world risk 

factors, and little integration. He concludes that emerging markets are less efficient than developed markets and 

that higher return and lower risk can be obtained by incorporating emerging market stocks in investors' portfolios. 

From a U.S.-based investor's point of view, it is important to understand the potential portfolio implications of 

investing in stocks in these countries. Additionally, it is desirable to understand the behavior of the major equity 

performance indicators for these countries over time. 

Risk and return are two important and influential factors on investment decisions. In order to reduce risk and 

increase efficiency, the observation of time series, which their changes can be mark of changes in securities 

prices, is helpful. Regard to the fact that investors and financial analysts apply return as one of the basic criteria 

to assess the company's stock, they tend to measure future returns amount, to make decisions about whether 

invest in shares or hold and sell shares (Bound, Shaun A. & Patel Kanak,2002). 

In 1909, Haar was the first person who cited wavelets. In1930, mathematicians, intended to analyze the 

singularity structure of matter, began to think of the base modification. After 1970, a French geophysics 

mannamed Jean Morleh, Fourier bases are not the best possible tool for underground exploration. The issue in a 

laboratory belonging to Akilen led to the discovery of wavelets. 

Wavelet analysis is one of the relatively new and exciting achievements in pure mathematics which is based 

ondecades of research in harmonic analysis. The clear wavelet function is base on mean zero and its 

amplificationis done in terms of the transfer of this function.In contrast to the trigonometric polynomials, 

wavelets are considered locally in space and thus closer connection between the coefficients of some functions is 

possible. Each set of wavelet coefficients covers different time series in the time scale and using the wavelet 

basis functions suggests a time-series transformed into frequency space and then a time series on different time 

scales. Analysis wavelet, also, makes analyze data at different scales of time and the idea behind wavelet and the 

decomposition of a time series of scale to scale feasible. 
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In such a context, where the strength and direction of relationships between economic and financial variables 

may differ according to the time scale of the analysis, wavelet techniques are of particular interest. Wavelet 

analysis is a comparatively new, at least in finance, and powerful tool for signal processing that takes into 

account both time and frequency domains. The main advantages of wavelets are their ability to decompose any 

signal into their time scale components, their flexibility to handle non-stationary data and their capacity to 

provide an alternative representation of the variability and association structure between variables on a scale-by-

scale basis. 

The primary aim of this paper is to examine the relationship between portfolio return volatility and the volatility 

of stock returns by using wavelet methods. The application of wavelet decomposition enables us to study the 

dynamic linkages between portfolio return volatility and the volatility of stock returns in time, as well as 

frequency domains, opening the path to a deeper understanding of the true relationship between these variables. 

Specifically, three alternative and complementary wavelet tools are utilized, namely wavelet variance, 

correlation and cross-correlation. Knowledge of the relationship between portfolio return volatility and the 

volatility of stock returns at different time scales is of undoubted interest for investors, portfolio managers, 

corporate managers and policy makers, as it provides critical information for risk management, asset allocation, 

portfolio management or policy making decisions. 

 

• Literature Review  

The study of wavelets as a distinct discipline started in the late 1980’s. Wavelet theory has since inspired the 

development of a powerful methodology, which includes a wide range of tools such as wavelet transforms, multi 

resolution analysis, time-scale analysis, time-frequency representations with wavelet packets. Signal processing, 

data compression, medical imaging, turbulence and numerical analysis are only a few from a long list of 

disciplines in which wavelets have been successfully employed. Among others, the wavelet transforms and their 

modifications are becoming increasingly popular in diverse areas of applied and theoretical science. However, 

wavelet analysis has received little attention in time series analysis of economic and financial data. 

Some recent papers in economic application include Goffe (1994), Gilbert (1995), Nason (1995), Ramsey and 

Zhang (1995, 1996), Wang (1995) and Wong et al. (1997). Goffe (1994) illustrated the application of wavelets to 

nonstationary economic time series, and Gilbert (1995) examined the stability of economic relationships. 

Ramsey and Zhang (1995, 1996) used waveform dictionaries to examine the timefrequency distributions of 

financial data. Nason (1995), Wang (1995) and Wong et al. (1997) discussed the wavelet detection of jump 

points in economic and financial data. 

Applications of wavelet analysis in financial markets analysis have been recently performed by E. Capobianco 

(2004), M. Gallegati (2008), and T. Kravets (2012). E. Capobianco applied wavelet techniques to the 

multiresolution analysis of the high frequency Nikkei stock index data, showing the use of the wavelet matching 

pursuit algorithm in uncovering the hidden periodic components. M. Gallegati investigated the relationship 

between stock market returns and economic activity, applying the maximum overlap discrete wavelet transform 

to the Dow Jones Industrial Average and the USA industrial production indices. The application of discrete and 

continuous wavelet techniques for crisis detection by the analysis of the European stock indices is offered in the 

paper of Kravets and Sytienko (2012). A comparative analysis of the local peculiarities of crisis deployment in 

Ukraine and Poland has also been performed in the research. 

The wavelet application using the macroeconomics indicator aspect is considered in the works of S. Kim (2005), 

A. Rua, L.C. Nunes (2009), P.M. Crowley (2007), R. Gencay (2001), H. Lee (2004). P.M. Crowley used a 

wavelet as a tool of the explanatory analysis, time scale decomposition of relationships, and destiny estimation in 

the US. He also analyzed the frequency components of the European business cycle by the wavelet 

multiresolutional analysis. R. Gencay investigated the foreign exchange rate scaling properties by the wavelet 

techniques. H. Lee studied international transmission effects among the US, Japan, Germany and two emerging 

markets, including Turkey and Egypt. He states that developing markets are strongly affected by developed 

markets but not vice versa. S. Kim studied the interdependence of the economic and financial 80 time series 

using the wavelet variance, correlation, and cross-correlation. Rua and Nunes tested changes in the indices’ 

comovements over time, using monthly data from the US, Germany, UK, and Japan. However, most of the 

mentioned researches were based on the discrete wavelet transform. 

A.A. Subbotin (2008) studied the multiscale stock volatility coefficients using wavelet techniques in the 

portfolio analysis. R.H. Abiyev (2012) used a combination of the wavelet techniques and neural networks for a 

time series prediction (we proposed the alternative forecasting method in our research). 

There are, however, a few recent papers examining the interest rate-stock market link through the wavelet 

multiscaling approach (Kim and In, 2007; Çifter and Ozun, 2008; Hamrita and Trifi, 2011; Tiwari, 2012). These 

studies are based on national stock markets of various countries and conclude that the connection between 

interest rates and share prices is scale dependent, increasing in importance at coarser time scales. All these works, 

with the only exception of Tiwari (2012), utilize a variant of the discrete wavelet transform, which is known as 
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the maximal overlap discrete wavelet transform (hereafter referred to as MODWT). 

Gencay, &Whitcher.(2002), In a study entitled Systematic risk and time scales, the study of Dell's shares on the 

Stock Exchange America, a new approach for the estimation of systematic risk (beta assets) based on the Capital 

Asset Pricing Model were put forward. Scalable Wavelet method proposed approach is based on a specific time 

scale, the scale breaks is based. Each scale Wavelet variance of market returns, and the covariance Wavelet, the 

market return and portfolio in order to obtain an estimate of the beta of the portfolio is calculated. Results 

indicate that the relationship between portfolio return and beta as standard Wavelet grows, becomes stronger. 

Thus the predictions of the CAPM in the periods of time when compared with short-term prospects are more 

favorable. 

Gencay (2005) in a study titled Wavelet analysis of stock markets in Africa, concluded that the variance and 

correlation of stock returns in the stock market, African countries will vary according to the scale. 

Ben Ammou and Ben Mabrouk (2007) used wavelet analysis to examine the relationship between stock returns 

and systematic risk in the capital asset pricing model, the French stock market have different time scales. A new 

approach based on Wavelet analysis in order to explain the relationship between share returns and systemic risk 

in the capital asset pricing model proposed in different time scale. The results show that the relation between 

stock returns and the level of systemic risk in the short-term scale It is long and more severe, so that the French 

stock market is efficient in the short-term and long-term. 

Kim (2007) research as the relationship between changes in stock prices and yields of bonds in the G7 based on 

analysis Wavelet concluded that, bond yields and stock change with the scale of change and the changes from 

country to country is also true. 

 

Hypothesis  

Since the present study, the relationship between portfolio return volatility and stock return volatility based on 

wavelet analysis is proposed hypotheses are as follows: 

1 - the volatility of portfolio return and volatility of stock returns over shorter time scale of 2-4 days, and 

significant negative relationship exists.  

2 - the volatility of portfolio return and volatility of stock returns over shorter time scale of 4-8 days, and 

significant negative relationship exists.  

3 - the volatility of portfolio return and volatility of stock returns over the medium term time scale of 8-16 days, 

and significant negative relationship exists. 

4 - the volatility of portfolio return and volatility of stock returns over the medium term time scale of 16-32 days, 

and significant negative relationship exists.  

5 - the volatility of portfolio return and volatility of stock returns for long-term time scale of 32-64 days, and 

significant negative relationship exists.  

6 - the volatility of portfolio return and volatility of stock returns for long-term time scale from 64-128 days, and 

significant negative relationship exists. 

Confirmed the research hypothesis in each period represents the relation between stock returns and beta in 

different time scales will be. Verify if the first and second hypothesis is the concept that short-term CAPM 

model is more predictability. But if confirmed hypotheses third, fourth, fifth and sixth contrary suggests that 

longer period of time will cause the predicted CAPM model would be more appropriate. In other words, the 

relationship between stock returns and beta wavelet becomes more severe with increasing scale. 

Variables and their measurement 

The purpose of this study, independent research, volatility portfolio return and dependent variables, the expected 

stock return volatility of individual stock portfolios is. Beta as unchangeable risk of an asset, relative to the stock 

market, CAPM return on investment in the form of equation (1) defines: 

 
CAPM two parts can be risk-free rate of return (Rf) and the risk premium is split. The equity risk premium 

investors demand returns in excess of risk-free interest rate to offset the risk that the investment unchangeable as 

Beta, in equation (2) is calculated as: 

 

 
Market risk premium, the returns (E (Rm)- Rf) is considered. Greater than the risk-free rate returns for investors, 

to keep the stock market.Since the risk premium on individual assets, the market risk premium multiplied by the 

(1) 

(2) 
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beta of it. Equation (1) can be related to (3) to be rewritten: 

 

 

 

Beta suited to parse the variance of an asset, especially as Ri variance equation (4) shows. 

 

  

 

So, ∂i can be decomposed into two parts, the first part of the firm's systematic risk (βi ∂ m) that part of the 

variance attributable to the asset market volatility shows. The second component, unsystematic risk firms (∂) and 

the firm-specific volatility is concerned. If all asset prices are related to market movements, the error (itε) is 

always zero, ∂ εit  =0 is. 

Expected rate of return kj using the D-CAPM is: 

K�������(�
���) 

 

  Beta-reduction (mitigation beta) is calculated by the following 

equation: 

   

β =
S�����,�


S��� �


 

R i is calculated from the following equation: 

   Rf calculated using data from the Central 

Bank of Iran to sites of interest rate investment deposits  

Term to consider. 

The following equations are used to calculate the rate of return. 

R
=
�����

��
 *100 

 

In the above equation, we have: 

 

(Table 1): Description of the variables 

  

Variables 

 

 

Proxies 

 

1 E(Ri) Volatility expected return on assets 

2 Rf risk-free premium rate 

3 E(Rm) Volatility expected market shares 

4 β Risk assets 

5 �� Expected rate of return 

6 α Percent increase in the capital 

7 �� First, the stock price 

8 �  The final price of the stock 

9 DPS Benefit split between shareholders 

10 �! Month-end market price index 

11 �  First prices month market index 

12 "# The market rate of return 

In this study wavelet coefficient beta, the sixth time scale used. while the scale of one  movements time 2-4 days, 

scale of two movements time 4-8 days, scale of three movements time 8-16 days, scale of four movements time 

16-32 days, scale of five movements time 32-64 days, scale of six as the highest scale is connected with the 

movements of the day 128-64. Because the scale of six is considered as the highest scale, the scale of 7 is 

associated with a period of 256-128 days. It is estimated that nearly one year, we will be away from the main 

purpose. 

 

Research Methodology 

Since this study sought to examine the relationship between portfolio return volatility and stock return volatility 

based on wavelet analysis is, Methods for the study of correlation and regression analysis was used to examine 

E(Ri)-Rf= βi [E(Rm)- Rf]                  ( 3) 
 

+ ∂                                 (4)  i = βi ∂ ∂  
 

(5) 

(6) 

(7) 

(8) 
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the relationship between these variables. 

The study of listed companies in Tehran Stock Exchange for the pharmaceutical, food and automotive industries, 

was selected as the target population. Among these firms, firms that are eligible under the cluster sampling 

method in the period 2008-2013 were selected from the 58 participants who were selected as samples. 

1. The beginning of 2008 have been a member of the Tehran Stock Exchange.  

2. Courses leading to the end of March is financial.  

3. During the research period, interrupted their stock trades have been more than 6 months.  

4. The information you need to research available.  

5. Component industry companies are not investing in financial intermediation. 

Required data through observation and analysis of documents and information have been collected from 

company financial statements. In this study, the research literature to develop a library of methods has been used. 

To test the hypothesis of a company's financial statements and information contained in the Site and the 

Information Exchange Bank and mash the New Deal program, has been used. 

In this study, the statistical methods used are descriptive statistics and regression.  

In order to test the research hypotheses, the beta of the sample companies, the annual breakdown of the different 

time scales of a capital asset pricing model adjusted (DCAPM) was calculated. Then using the wavelet time-

series of returns and beta, firms were evaluated in the study. Optimized based on the time period is introduced. 

Well as to determine the significance of the relationship between the independent variables and the dependent, t -

test was used. Finally, the primary data file format of the Excel spreadsheet software was designed and 

completed.  

And then analyzed in order to EVIEWS software is used to perform statistical tests. 

Statistical hypothesis test  

The first hypothesis test(Short term 2-4 days) 

The results in Table (1) The F-statistic is equal to 44.1, which was significant at a confidence level of 95, which 

represents an estimate is good. In addition, the coefficient of determination and the adjusted coefficient of 

determination for models with 0.44 and  0.43. Also, the value of the independent variable portfolio return., and 

the dependent variable expected rate of return, the first scale is equal - 0.149, which is significant at 95% 

confidence. 

Table (1): short term (2-4 days) 

Dependent variable: ER2                                                       Method: Panel Least Squares 

Includes: 6 time periods              Sample range:2008-2013  

Number of companies: 158                       Total sample: 58 

Variables Coefficients Standard 

deviation 

t-statistics Probability of 

statistic t 

C 0.071284* 0.009346 7.627282 0.000 

B1STDRM -0.149063* 0.000739 -6.641353 0.000 

R Square 0.440 Mean of the dependent variable 

 
0.035 

Adjusted R Square 0.430 Standard deviation of the dependent 

variable 
0.076 

Standard deviation 

of the regression 
0.057 AIC -2.831 

Not justify the sum 

of squared error 
0.186 SBC -2.760 

LOG 84.115 HQ -2.803 

Durbin- Watson 1.729 F  44.107 

VIF 0.000 

The second hypothesis test (Short term 4-8 days) 
The results in Table (2) The F-statistic is equal to 31.68, which was significant at a confidence level of 95, which 

represents an estimate is good. In addition, the coefficient of determination and the adjusted coefficient of 

determination for models with 0.34 and 0.36. Also, the value of the independent variable portfolio return., and 

the dependent variable expected rate of return, the second scale is equal – 0.01, which is significant at 95% 

confidence. 
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Table (2): short term (4-8 days) 

Dependent variable: ER2                                                       Method: Panel Least Squares 

Includes: 6 time periods              Sample range:2008-2013  

Number of companies: 158                       Total sample: 58 

Variables Coefficients Standard 

deviation 

t-statistics Probability of 

statistic t 

C 0.019067* 0.003805 5.011099 0.000 

B1STDRM -0.015643* 0.000278 -5.628883 0.000 

R Square 0.361 Mean of the dependent variable 

 
0.0094 

Adjusted R Square 0.349 Standard deviation of the dependent 

variable 
0.032 

Standard deviation 

of the regression 
0.025 AIC -4.434 

Not justify the sum 

of squared error 
0.037 SBC -4.363 

LOG 130.590 HQ -4.406 

Durbin- Watson 1.881 F  31.684 

VIF 0.000001 

Due to hypothesized relationships between first and second in the 95% confidence level, it can be concluded that 

the short-run relationship between portfolio return and the expected rate of return there. So the first and second 

hypothesis is confirmed. 

• The third hypothesis tests (medium-term period 8-16) 

The results in Table (3) The F-statistic is equal to 37.25, which was significant at a confidence level of 95, which 

represents an estimate is good. In addition, the coefficient of determination and the adjusted coefficient of 

determination for models with 0.38 and 0.39. Also, the value of the independent variable portfolio return., and 

the dependent variable expected rate of return,  

the third scale is equal – 0.039, which is significant at 95% confidence. 

Table (3): medium-term period (8-16 days) 

Dependent variable: ER2                                                       Method: Panel Least Squares 

Includes: 6 time periods              Sample range:2008-2013  

Number of companies: 158                       Total sample: 58 

Variables Coefficients Standard 

deviation 

t-statistics Probability of 

statistic t 

C 0.014256* 0.003250 4.387031 0.0001 

B1STDRM -0.039904* 0.000229 -6.103636 0.000 

R Square 0.399 Mean of the dependent variable 

 
0.0105 

Adjusted R Square 0.388 Standard deviation of the dependent 

variable 
0.031 

Standard deviation 

of the regression 
0.024 AIC -4.562 

Not justify the sum 

of squared error 
0.033 SBC -4.491 

LOG 134.311 HQ -4.534 

Durbin- Watson 1.798 F  37.254 

VIF 0.0000000 

The fourth hypothesis testing (medium-term period 16-32 days) 

The results in Table (4) The F-statistic is equal to 61.44, which was significant at a confidence level of 95, which 

represents an estimate is good. In addition, the coefficient of determination and the adjusted coefficient of 

determination for models with 0.51 and 0.52. Also, the value of the independent variable portfolio return., and 

the dependent variable expected rate of return, the fourth scale is equal – 0.25, which is significant at 95% 

confidence. 
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Table (4): medium-term period (16-32 days) 

Dependent variable: ER2                                                       Method: Panel Least Squares 

Includes: 6 time periods              Sample range:2008-2013  

Number of companies: 158                       Total sample: 58 

Variables Coefficients Standard 

deviation 

t-statistics Probability of 

statistic t 

C 0.008692* 0.001079 8.056237 0.0000 

B1STDRM -0.259216* 7.55E-05 -7.838885 0.0000 

R Square 0.523 Mean of the dependent variable 

 
0.0032 

Adjusted R Square 0.514 Standard deviation of the dependent 

variable 
0.0090 

Standard deviation 

of the regression 
0.006 AIC -7.259 

Not justify the sum 

of squared error 
0.002 SBC -7.188 

LOG 212.517 HQ -7.231 

Durbin- Watson 1.815 F  61.448 

VIF 0.000000 

Due to hypothesized relationships between third and fourth in the 95% confidence  

level, it can be concluded that the mid-term relationship between portfolio return and the expected rate of return 

there. So the third and fourth hypothesis is confirmed. 

• The fifth hypothesis testing (long-term period 32-64 days) 

The results in Table (5) The F-statistic is equal to 10.7, which was significant at a confidence level of 95, which 

represents an estimate is good. In addition, the coefficient of determination and the adjusted coefficient of 

determination for models with 0.14 and 0.16. Also, the value of the independent variable portfolio return., and 

the dependent variable expected rate of return, the fifth scale is equal – 0.01, which is significant at 95% 

confidence. 

Table (5): long-term period (32-64days) 

• Dependent variable: ER2                                                       Method: Panel Least Squares 

Includes: 6 time periods              Sample range:2008-2013  

Number of companies: 158                       Total sample: 58 

Variables Coefficients Standard 

deviation 

t-statistics Probability of 

statistic t 

C -0 .002014* 0.000559 -3.606682 0.0007 

B1STDRM -0.016148* 4.94E-05 -3.271403 0.0018 

R Square 0.160 Mean of the dependent variable 

 
-0.0006 

Adjusted R Square 0.145 Standard deviation of the dependent 

variable 
0.0031 

Standard deviation 

of the regression 
0.002 AIC -8.794 

Not justify the sum 

of squared error 
0.0004 SBC -8.723 

LOG 257.029 HQ -8.766 

Durbin- Watson 1.932 F  10.702 

VIF 0.001835 

The sixth hypothesis testing (long-term period 64-128 days) 

The results in Table (6) The F-statistic is equal to 18.21, which was significant at a confidence level of 95, which 

represents an estimate is good. In addition, the coefficient of determination and the adjusted coefficient of 

determination for models with 0.23 and 0.24. Also, the value of the independent variable portfolio return., and 

the dependent variable expected rate of return, the sixth scale is equal – 0.033, which is significant at 95% 

confidence. 
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Table (6): long-term period (64-128days) 

Dependent variable: ER2                                                       Method: Panel Least Squares 

Includes: 6 time periods              Sample range:2008-2013  

Number of companies: 158                       Total sample: 58 

Variables Coefficients Standard 

deviation 

t-statistics Probability of 

statistic t 

C -0 .005482* 0.000974 -5.626428 0.0000 

B1STDRM -0.033795* 7.92E-05 -4.268227 0.0001 

R Square 0.245 Mean of the dependent variable 

 
-0.002 

Adjusted R Square 0.231 Standard deviation of the dependent 

variable 
0.005 

Standard deviation 

of the regression 
0.005 AIC -7.721 

Not justify the sum 

of squared error 
0.001 SBC -7.650 

LOG 225.918 HQ -7.693 

Durbin- Watson 1.931 F  18.217 

VIF 0.000077 

Due to hypothesized relationships between fifth and sixth in the 95% confidence level, it can be concluded that 

the long-term relationship between portfolio return and the expected rate of return there. So the third and fourth 

hypothesis is confirmed. 

 

Conclusion and Discussion 

The results of the first and second hypothesis suggest that there exists a short-term relationship between portfolio 

return and the expected rate of return, so the first and second hypotheses are confirmed; also the short-term 

impacts of the portfolio return in the first scale have been greater than the second scale. 

The overall results of the first two hypotheses consistent with the results from the study of Bollywood and others 

which shows that, in short term, the relationship between market returnsdue to the lack of consensus on the part 

of analysts and behavioral reasons such as skewness of returns has been over the stock returns. It, also, is 

inconsistent with the results Gencay, &Whitcher.(2002), which shows  that the time period when compared with 

short-term prospects are more favorable. 

The results of the third and fourth hypothesesshow that there has been a significant relationship between 

portfolio return and the expected rate of return and the third and fourth hypotheses are confirmed. Also, in the 

medium-term, the impacts of the portfolio return in the third scale are greater than the fourth scale. 

In general, the overall results of the third and fourth hypotheses is inconsistent with the results of Gencay, 

&Whitcher.(2002) who showed the relationship between portfolio return and the return is more , in comparison 

with short –ranged period of time. 

 The results of the fifth and sixth hypotheses indicate that the long-run relationship exists between the portfolio 

return and the expected rate of return and the fifth and sixth hypotheses are confirmed. Also, over the long term, 

the portfolio return impacts of the sixth scale are more than the fifth one. 

In general, the overall results of the third and fourth hypotheses is inconsistence  in comparison with the results 

of  Ben Ammou and Ben Mabrouk (2007) who suggest that the relation between stock returns and the level of 

short -scale and long-term portfolio return is more intense. 
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