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Abstract 

This paper empirically investigates the volatility pattern of Indian stock market based on time series data which 

comprises of daily closing prices of the S&P CNX Nifty Index for a fifteen year period from 1st April 2001 to 

31st March 2016. For this study the analysis has been done using both symmetric and asymmetric models of 

Generalized Autoregressive Conditional Heteroscedastic (GARCH). For capturing the symmetric and 

asymmetric volatility GARCH-M (1, 1) and EGARCH (1, 1) estimations are found to be the most appropriate 

model as per the Akaike Information Criterion (AIC), Schwarz Information Criterion (SIC) and Log Likelihood 

ratios. The study also provides evidence for the existence of a positive and insignificant risk premium as per 

GARCH-M (1, 1) model. The asymmetric leverage effect captured by the parameter of EGARCH (1, 1) and 

TGARCH (1, 1) models show that negative shocks have a significant effect on conditional variance (volatility). 

Keywords: ARCH Effects, GARCH Models, Leverage Effect, Stock Returns, Volatility. 

 

Introduction 

Over the past few years, modelling and forecasting volatility of a financial time series has become a popular area 

of research and has gained a great deal of attention from academicians, researchers and others, this is because 

volatility is considered as an important concept for many economic and financial applications, like risk 

management, portfolio optimization and asset pricing. Volatility refers to the amount of risk or uncertainty about 

the size of changes in a security’s value. A higher volatility means a security’s value can potentially be spread 

out over a larger range of values, whereas, a lower volatility means a security’s value does not fluctuate 

drastically, but changes in value over a period of time. A special feature of the volatility is that it is not directly 

visible, so the financial analysts are especially eager to find a precise estimate of this conditional variance 

process. Consequently, a number of models have been developed that are especially suited to estimate the 

conditional volatility of financial instruments, of which the most well-known and often applied model for this 

volatility is the conditional heteroscedastic models. The main aim of building these models was to make a good 

forecast of future volatility that would be helpful in obtaining a more efficient portfolio allocation, having a 

better risk management and more precise derivative prices of a certain financial instrument.  

The time series observations are found to depend on their own past value (autoregressive), depending 

on past information (conditional) and exhibit non-constant variance (heteroskedasticity). It has been found that 

the stock market volatility changes with time (i.e., it is ‘time-varying’) and exhibits ‘volatility clustering’. A 

series with some periods of high volatility and some periods of low volatility is said to exhibit volatility 

clustering.  

Variance or standard deviation is often used as the risk measure in risk management. Engle (1982) 

introduced Autoregressive Conditional Heteroskedasticity (ARCH) model to the world to model financial time 

series that exhibit time varying conditional variance. A generalized arch (GARCH) model extended by 

Bollerslev (1986) is another popular model for estimating stochastic volatility. These models are generally used 

in various branches of econometrics, especially in financial time series analysis. Besides, with the introduction of 

models of ARCH and GARCH, there have been number of empirical applications of modelling variance 

(volatility) of financial time series. Though, the GARCH cannot account for leverage effect, however they 

account for volatility clustering and leptokurtosis in a series, this necessitated to develop new and extended 

models over GARCH that resulted in to new models viz., GARCH-M, EGARCH, TGARCH and PGARCH. 

This paper is organised as follows: after this introductory section, Section 2 is devoted to the Literature 

Review. Section 3 presents the methodology, while Section 4 is based on the discussion of the empirical results. 

Finally, Section 5 contains the conclusion of the study. This paper adopted the approach of Banumathy and 

Azhagaiah (2015) in arranging the methodology, with slight modification. 

 

Literature Review 

Jorge (2007)  modeled  the  volatility  for  daily  and  weekly  returns  of  the Portuguese  Stock  Index  PSI-20  

by  using  simple GARCH-M, GARCH, Threshold  ARCH  (TARCH)  and  Exponential  GARCH  (EGARCH)  
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models  & found that  there  have  been  significant asymmetric shocks to volatility in the daily stock  returns,  

but  not  in  the  weekly  stock  returns.  They  also  reported  that  some weekly  returns  time  series  properties  

have  been  substantially  different  from properties  of  daily  returns,  and  the  persistence  in  conditional  

volatility  has  been different  for  some  of  the  sub-periods  referred.  Lastly,  they  have  compared  the 

forecasting  performance  of  the  various  volatility  models  in  the  sample  periods before and after the terrorist 

attack on September 11, 2001. 

Floros (2008) employed  the  GARCH  model,  as  well  as EGARCH,  TGARCH, the component GARCH , 

asymmetric  component  GARCH  and the PGARCH model using daily data  from Egypt (CMA  General  index)  

and  Israel  (TASE-100  index)  to  model  the  Stock  Market Volatility and concluded that increased risk has not 

been found to necessarily lead to a higher return.  

Tripathy, Rao and Kanagaraj (2009) investigated the impact of introduction of the derivative instruments and 

leverage and asymmetric effect on spot market volatility using NSE Nifty as a proxy for Indian stock market 

during the period October 1995 to December 2006 by using EGARCH, TARCH, GARCH, and component 

ARCH model. The results  have  suggested a decline  in spot  market volatility  and  market  efficiency  has  

improved  after  introduction  of index  futures,  stock  futures,  stock  options  and  index  options  on  the  spot  

market due  to  increased  impact  of  recent  news.  This research study  has  also  found  evidence  of leverage 

and asymmetric effect on spot market where the conditional variance is an  asymmetric  function  of  past  

innovation,  rising  proportionately  more  during market  declines.  The research study has also reported that 

asymmetric GARCH models provide better fit than the symmetric GARCH models.  

Goudarzi and Ramanarayanan (2010) examined the volatility of Indian stock market using BSE 500 stock 

index as the proxy for ten years. ARCH and GARCH models were estimated and the best model was selected 

using the model selection criterion viz., Akaike Information Criterion (AIC) and Schwarz Information Criterion 

(SIC). The study found that GARCH (1, 1) was the most appropriate model for explaining volatility clustering 

and mean reverting in the series for the study period.  

Ahmed and Suliman (2011) tried to estimate volatility (conditional variance) in the daily returns of the 

principal stock exchange of Sudan namely, Khartoum Stock Exchange (KSE) over the period from January 2006 

to November 2010. They used symmetric and asymmetric models that capture the volatility clustering and 

leverage effect and found that conditional variance process is highly persistent (explosive process), and provide 

evidence on the existence of risk premium for the KSE index return series which support the positive correlation 

hypothesis between volatility and the expected stock returns. They also suggested that the asymmetric models 

provide better fit than the symmetric models, which confirms the presence of leverage effect. 

 Elsayeda (2011) employed EGARCH and TGARCH models to examine the existence of asymmetric volatility 

and leverage effect for the Egyptian stock market index. The results indicated that there is existence of the 

leverage effect for daily EGX30 index returns. 

Goudarzi and Ramanarayanan (2011) in another study, they investigated the volatility of BSE 500 stock index 

and modelled two non-linear asymmetric model viz., EGARCH (1, 1) and TGARCH (1, 1) and found that 

TGARCH (1, 1) model was found to be the best preferred model as per Akaike Information Criterion (AIC), 

Schwarz Information Criterion (SBIC) and Log Likelihood (LL) criteria. 

Mittal, Arora, and Goyal (2012) examined the behaviour of Indian stock price and investigated to test whether 

volatility is asymmetric using daily returns from 2000 to 2010. As per the study GARCH and PGARCH models 

were found to be best fitted models to capture symmetric and asymmetric effect respectively.  

Adesina (2013) used symmetric and asymmetric GARCH models to estimate the stock return volatility and the 

persistence of shocks to volatility of the Nigerian Stock Exchange (NSE). He used monthly data from January 

1985 to December 2011 of the NSE all share-index. His study revealed high persistent volatility for the NSE 

return series found no asymmetric shock phenomenon (leverage effect) for the return series. 

Vijayalakshmi and Gaur (2013) used eight different models to forecast volatility in Indian and international 

stock markets. NSE and BSE index were considered as a proxy for Indian stock market and the exchange rate 

data for Indian rupee and foreign currency over the period from 2000 to 2013. Based on the forecast statistics the 

study found that TARCH and parch models lead to better volatility forecast for BSE and NSE return series for 

the stock market evaluation and ARMA (1, 1), ARCH (5), EGARCH for the foreign exchange market. 

Banumathy and Azhagaiah (2015) examined the volatility pattern of Indian stock market. The study used both 

symmetric and asymmetric models of Generalized Autoregressive conditional Heteroscedastic (GARCH) using 

daily returns from 2003 to 2012. As per the study GARCH and GARCH and TGARCH models were found to be 

best fitted models to capture symmetric and asymmetric effect respectively. The study also provides evidence for 

the existence of a positive and insignificant risk premium as per GARCH-M (1, 1) model. The asymmetric effect 

(leverage) captured by the parameter of EGARCH (1, 1) and TGARCH (1, 1) models show that negative shocks 

have significant effect on conditional variance (volatility). 

Most of the Indian studies attempted on modelling volatility found that the GARCH (1, 1) is considered 

the best model to capture the symmetric effect and for leverage effects, EGARCH-M and PGARCH models have 
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been found to be appropriate by the previous studies. However, the choice of best fitted and adequate model 

depends on the model that is included for the evaluation in the study. Hence, this study used different GARCH 

family models, both in symmetric as well as asymmetric effect to capture the facts of return and to study the 

most appropriate model in the volatility estimation. 

 

Research Methodology 

Data source 

The study is based on the secondary data that were collected from official website of National Stock Exchange 

www.nseindia.com. S&P CNX Nifty indices were used as proxy to the stock market. The daily closing prices of 

Nifty indices over the period of fifteen years from 1st April 2001 to 31st March 2016 were collected and used for 

analysis. 

 

Research methods 

Volatility has been estimated on return (Rt) and hence before going for all these tests, first the daily returns were 

calculated. The Nifty return series is calculated as a natural log of first difference of daily closing price, which is 

as follows: 

 
where Rt is the natural log daily return on Nifty index for time t, Pt is the closing price at time t, and P t−1 is the 

corresponding price in the period at time t − 1. 

 

Test for Stationarity 

Before estimating the models, the unit root properties for the time series data have been tested individually for 

Nifty series using ADF and Phillips-Perron test statistic.  

 

Test for Heteroscedasticity 

One of the most important issues before applying the GARCH methodology is to first examine the residuals for 

the evidence of heteroscedasticity. To test the presence of heteroscedasticity in residual of the return series of 

Nifty index returns, Lagrange Multiplier (LM) test for Autoregressive conditional heteroscedasticity (ARCH) is 

used. The test procedure is performed by first obtaining the residuals et from the ordinary least squares 

regression of the conditional mean equation which might be an autoregressive (AR) process, moving average 

(MA) process or a combination of AR and MA processes; (ARMA) process (Suliman, 2012).  

In this study, an autoregressive moving average ARMA (1, 1) model for the conditional mean in the return series 

as an auxiliary regression is employed. The conditional mean equation is as: 

 
It is sensible to compute the Engle (1982) test for arch effect to ensure that there is no arch effect. 

Volatility Measurement Technique 

GARCH models represent the main methodologies that are applied in modeling the stock market volatility. The 

present study employed GARCH (1, 1) and GARCH-M (1, 1) for modeling conditional volatility and for 

modeling asymmetric volatility EGARCH (1, 1) and TGARCH (1, 1) were applied. 

The following GARCH techniques are applied to capture the volatility in the return series. 

Symmetric Measurement 

To study the relation between asymmetric volatility and return, the GARCH (1, 1) and GARCH-M (1, 1) models 

are used in the study. 

The Generalized ARCH Model (GARCH) 

The GARCH model (Bollerslev1 1986), which allows the conditional variance to be dependent upon previous 

own lags; conform to the conditional variance equation in the simplest form as: 

 
where  > 0,  ≥ 0, and  ≥ 0. 

The size of parameters   and determine the short-run dynamics of the volatility time series. If the sum of 

the coefficient is equal to one, then any shock will lead to a permanent change in all future values. Hence, shock 

to the conditional variance is ‘persistence.’ 

The GARCH-in-Mean (GARCH-M Model) 

In GARCH model, the conditional variance enters the mean equation directly, which is generally known as a 

                                                 
1 T. Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity,” Journal of Econometrics, vol. 31, 1986, pp. 

307–326. 
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GARCH-M model. The return of a security may depend on its volatility and hence a simple GARCH-M (1, 1) 

model can be written as: 

Mean Equation  

where, rt is the return of the asset at time t, μ is the average return, and εt is the residual return. 

Variance Equation  

The parameter λ in the mean equation is called the risk premium. A positive λ indicates that the return is 

positively related to its volatility, i.e. a rise in mean return is caused by an increase in conditional variance as a 

proxy of increased risk. 

Asymmetric Measurement 

The main drawback of symmetric GARCH is that the conditional variance is not able to respond asymmetrically 

to rise and fall in the stock returns. Hence, a number of models have been introduced to deal with the issue and 

are called asymmetric models viz., EGARCH, TGARCH and PGARCH, which are used for capturing the 

asymmetric phenomena. To study the relation between asymmetric volatility and return, the EGARCH (1, 1) and 

TGARCH (1, 1) models are used in the study. 

The Exponential GARCH Model 

This model is based on the logarithmic expression of the conditional variability. The presence of leverage effect 

can be tested and this model enables to find out the best model, which capture the symmetries of the Indian stock 

market (Nelson 1991) and hence the following equation: 

 
The left-hand side is the log of the conditional variance. The coefficient  is known as the asymmetry or 

leverage term. The term , accounts for the presence of the leverage effects, which makes the model asymmetric. 

If  = 0, then the model is symmetric. If is negative and statistically different from zero, it indicates the 

existence of the leverage effect. 

Threshold GARCH Model 

The generalized specification of the threshold GARCH for the conditional variance (Zakoian 1994) is given by: 

 
The γ is known as the asymmetry or leverage parameter. In this model, good news (εt−1 > 0) and the bad news 

(εt−1 < 0) have differential effect on the conditional variance. Good news has an impact of i, while bad news 

has impact on i + i. Hence, if  is significant and positive, negative shocks have a larger effect on  than the 

positive shocks. 

The criteria to accept the null hypothesis of no leverage effect in TGARCH model is that  coefficient must be 

negative. In other words, if the  coefficient is not negative ( ) the news impact is asymmetric. 

 

Results and Discussion 
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Fig. 1 Descriptive Statistics 

The mean of the Nifty returns is positive, indicating the fact that price has increased over the period. 

The descriptive statistics shows that the returns are negatively skewed, indicating that there is a high probability 

of earning returns which is greater than the mean. The K of the series is greater than 3, which implies that the 
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return series is fat tailed and does not follow a normal distribution and it was further confirmed by Jarque-Bera 

test statistics, which is significant at 1% level and hence the null hypothesis of normality is rejected.  

To make the series stationary, the closing price of the Nifty index is converted into daily natural 

logarithmic return series. Figure 2 shows volatility clustering of return series of the S&P CNX Nifty for the 

study period from 1st April 2003 to 31st March 2016. From the figure 2, it can be inferred that the period of low 

volatility tends to be followed by period of low volatility for a prolonged period and the period of high volatility 

is followed by period of high volatility for a prolonged period, which means the volatility is clustering and the 

return series vary around the constant mean but the variance is changing with time. 
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Fig. 2 Nifty Returns 

Table 1 shows the presence of unit root in the series tested using ADF and PP tests. Both the ADF and 

PP test statistics reported in table 1 reject the hypothesis at 1% level as the critical value of –3.43 for both ADF 

and PP tests of a unit root in the return series. Also the p values of ADF and PP are less than 0.05. Hence, the 

results of both the tests confirm that the series are stationary.  

Table 1 Stationarity Test 

Value ADF PP 

t-Statistic 

Prob.* 

-56.69278 

0.0001 

-56.70007 

0.0001 

Critical Value 

1% 

5% 

10% 

 

-3.431916 

-2.862117 

-2.567121 

 

-3.431916 

-2.862117 

-2.567121 

As a prior step for estimating ARCH family model equation, a mean equation needs to be formulated. 

The mean equation for ARCH family model has been formulated as ARMA (1, 1) model using Box Jenkins 

methodology. The results for mean equation have been enumerated in the table below: 

Table 2 Mean Equation ARMA (1, 1) 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000513 0.000258 1.988394 0.0468 

AR(1) -0.352298 0.158833 -2.218035 0.0266 

MA(1) 0.432098 0.153069 2.822905 0.0048 

     
          

The coefficients of constant, AR & MA terms are significant at 5% level.  

After obtaining the residuals from the ARMA (1, 1) model the ARCH-LM test is applied to find out the 

presence of arch effect in the residuals of the Nifty return series. From the table 3, it is inferred that the ARCH-

LM test statistics is highly significant. Since p value is less than 0.05, the null hypothesis of ‘no ARCH effect’ is 

rejected at 1% level, which confirms the presence of ARCH effects in the residuals of time series models in the 

Nifty returns. 
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Table 3 ARCH-LM Test 

Heteroskedasticity Test: ARCH   

     
     F-statistic 188.9328     Prob. F(1,3730) 0.0000 

Obs*R-squared 179.9207     Prob. Chi-Square(1) 0.0000 

     
     The Ljung-Box Q-statistics is used to check the validity of autoregressive conditional heteroskedasticity 

(ARCH) in the residuals. If there is no ARCH in the residuals, the autocorrelations and partial autocorrelations 

should be zero at all lags and the Q-statistics should not be significant. Looking at Table 4, there is clear 

evidence that the return series exhibit ARCH effect. The squared residuals of Nifty returns revealed significant 

correlation among the error terms with all Q statistics being significant as is evident from low p values reported 

in the last column of the table 4.  

Table 4 Correlogram of Residuals Squared 

       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       
               |**    |         |**    | 1 0.220 0.220 180.11  

        |*     |         |*     | 2 0.177 0.136 297.76  

        |*     |         |      | 3 0.118 0.059 350.11 0.000 

        |*     |         |*     | 4 0.178 0.131 468.79 0.000 

        |*     |         |      | 5 0.135 0.061 536.71 0.000 

        |*     |         |      | 6 0.099 0.021 573.17 0.000 

        |*     |         |*     | 7 0.133 0.076 639.66 0.000 

        |*     |         |      | 8 0.082 0.003 664.75 0.000 

        |*     |         |*     | 9 0.136 0.075 734.26 0.000 

        |*     |         |*     | 10 0.147 0.082 814.79 0.000 

        |*     |         |      | 11 0.124 0.034 872.33 0.000 

        |      |         |      | 12 0.073 -0.009 892.33 0.000 

       
       From the ARCH-LM test and squared residuals of Nifty returns there is a sufficient evidence for using 

ARCH family models has been generated. For mean equation ARMA (1, 1) model can be used.  

 

Symmetric GARCH Models 

The result of GARCH (1, 1) and GARCH-M (1, 1) models is shown in table 5, which reveals that the parameter 

of GARCH is statistically significant. In other words, the coefficients viz., constant (α0), ARCH term (α1) and 

GARCH term (β1) are highly significant at 1% level. In the conditional variance equation, the estimated β1 

coefficient (0.864563) is considerably greater than α1 coefficient (0.114001) which resembles that the market has 

a memory longer than one period and that volatility is more sensitive to its lagged values than it is to new 

surprises in the market values. It shows that the volatility is persistent. The sizes of the parameters α1 and β1 

determine the volatility in time series. The sum of these coefficients (α1 and β1) is 0.978564, which is close to 

unity indicating that the shock will persist for many future periods. 

Since the risk-return parameter is positive and significant at 1% level, it shows that there is a positive 

relationship between risk and return. Further, ARCH-LM test is employed to check ARCH effect in residuals 

and from the results, it was found that the p is greater than 0.05, which led to the conclusion that the null 

hypothesis of ‘no arch effect’ is accepted. In other words, the test statistics does not support for any additional 

arch effect remaining in the residuals of the models, which implies that the variance equation was well specified 

for the market. 

The GARCH-M (1, 1) model is estimated by allowing the mean equation of the return series to depend 

on a function of the conditional variance. The constant in mean equation is significant at 5% level, indicating 

that there is an abnormal return for the market. From the table 5, it is inferred that the coefficient of conditional 

variance (λ) in the mean equation value is positive however, it is statistically insignificant, which implies that 

there is no significant impact of volatility on the expected return, indicating lack of risk-return trade off over 

time. This outcome was in consensus of the previous findings of Goudarzi and Ramanarayanan (2010). In the 

variance equation of GARCH-M (1, 1), the parameters viz., constant (α0), ARCH term (α1) and GARCH term (β1) 

are highly significant at 1% level. The sum of α1 and β1 is 0.9783, which infers that shocks will persist in the 

future period. The ARCH-LM test was applied on Nifty residuals to check the presence of additional arch effect 

and the results showed that the test statistics do not exhibit additional arch effect for the whole study period 

indicating that the variance equation is well specified. 

The best fitted models both in symmetric as well as in asymmetric effect are selected based on the 
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minimum AIC and SIC value and the highest log likelihood value. Likewise, the AIC value (–5.892580) is low 

and Log Likelihood value (11005.50) is high for GARCH-M (1, 1) when compared to its alternate symmetric 

model, called GARCH (1, 1) but the SIC value (-5.882552) is low for GARCH (1, 1) model. Hence GARCH-M 

(1, 1) model is found to be the best fitted model for this study. This outcome was not in consensus with the 

previous studies, as per Goudarzi and Ramanarayanan (2010), Mittal, Arora, and Goyal (2012) and Banumathy 

and Azhagaiah (2015) GARCH (1, 1) model is best fitted model to describe the symmetric volatility process. 

Table 5 Results of GARCH (1, 1) and GARCH-M (1, 1) models 

Coefficient GARCH (1, 1) GARCH-M (1, 1) 

Mean 

µ (Constant) 

λ Risk Premium  

 

0.000877* 

– 

 

0.000563 

2.416465 

Variance 

(α0) Constant  

(α1) ARCH effect  

(β1) GARCH effect  

α1 + β1 

Log likelihood 

Akaike Info. Criterion (AIC) 

Schwarz Info. Criterion (SIC) 

 

4.86E-06* 

0.114001* 

0.864563* 

0.978564 

11004.46 

-5.892557 

-5.882552 

 

4.90E-06* 

0.114313* 

0.864054* 

0.978367 

11005.50 

-5.892580 

-5.880907 

ARCH-LM test for heteroscedasticity 

ARCH-LM test statistics 

Prob. Chi-Square (1) 

 

0.008072 

0.928400 

 

0.020140 

0.887100 

Notes Source: Computed from the compiled and edited data by using EVIEWS 8.  

* Significant at 1% level. 

 

Asymmetric GARCH Models 

In order to capture the asymmetries in the return series, two models have been used viz., EGARCH-M (1, 1) and 

TGARCH (1, 1).  captures the asymmetric effect in both EGARCH-M (1, 1) and TGARCH (1, 1) models. The 

asymmetrical EGARCH (1, 1) model is used to estimate the returns of the Nifty index and the result is presented 

in table 6. The table reveals that the sum of ARCH (α1) and GARCH coefficient (β1) are greater than one, 

reporting that conditional variance is explosive; the estimated coefficients are statistically significant at 1% level. 

, the leverage coefficient, is negative and is statistically significant at 1% level, exhibiting the leverage effect in 

the Nifty return during the study period. The analysis revealed that there is a negative correlation between past 

return and future return (leverage effect); hence, EGARCH (1, 1) model supports for the presence of leverage 

effect on the Nifty return series. Finally, the ARCH-LM test statistics for EGARCH (1, 1) reveals that the null 

hypothesis of no heteroscedasticity in the residuals is accepted. 

An alternate model to test for asymmetric volatility in the Nifty return is TGARCH, which shows (see 

table 6) the estimated result of TGARCH (1, 1) model. In it, the coefficient of leverage effect ( ) is positive and 

significant at 1% level, which implies that negative shocks or bad news have a greater effect on the conditional 

variance than the positive shocks or good news. The diagnostic test is performed to test the presence of 

additional arch effect in the residuals. The ARCH-LM test statistic for TGARCH (1, 1) model does not show any 

additional arch effect present in the residuals of the model, which implies that the variance equation is well 

specified for the Indian stock market. 

The AIC, SIC (–5.909726; –5.898053) and Log Likelihood value (11037.50) for EGARCH (1, 1) 

conforms the norms and hence EGARCH (1, 1) model is apparently seems to be an adequate description of 

asymmetric volatility process. This was not in consensus with the previous findings of Goudarzi and 

Ramanarayanan (2010), Mittal, Arora, and Goyal (2012) and Banumathy and Azhagaiah (2015), as per their 

findings TGARCH and PGARCH is best fitted model to describe the asymmetric volatility process. 
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Table 6 Results of EGARCH (1, 1) and TGARCH (1, 1) models 

Coefficient EGARCH (1, 1) TGARCH (1, 1) 

Mean 

µ (Constant) 

 

0.000524* 

 

0.000517* 

Variance 

(α0) Constant  

(α1) ARCH effect  

(β1) GARCH effect  

( ) Leverage effect 

α1 + β1 

Log Likelihood 

Akaike Info. Criterion (AIC) 

Schwarz Info. Criterion (SIC) 

 

-0.482467* 

0.225247* 

0.964569* 

-0.100739* 

0.978564 

11037.50 

-5.909726 

-5.898053 

 

5.66E-06* 

0.045500* 

0.861108* 

0.132785* 

0.978367 

11036.85 

-5.909375 

-5.897703 

ARCH-LM test for heteroscedasticity 

ARCH-LM test statistics 

Prob. Chi-Square (1) 

 

0.468391 

0.493700 

 

1.471138 

0.225200 

Notes Source: Computed from the compiled and edited data by using EVIEWS 8.  

* Significant at 1% level. 

Conditional Variance of GARCH (1, 1), GARCH-M (1, 1), EGARCH (1, 1) and TGARCH (1, 1) 

models respectively. 
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Conclusion 
In this study, volatility of Nifty index return has been tested by using the symmetric and asymmetric GARCH 

models. The daily closing prices of Nifty index for fifteen years are collected and modelled using four different 

GARCH models that capture the volatility clustering and leverage effect for the study period i.e. from 1st March 

2001 to 31st April 2016. GARCH (1, 1), GARCH-M (1, 1), EGARCH (1, 1), and TGARCH (1, 1) models have 

been employed for this study after confirming the unit root rest, volatility clustering and arch effect. The results 

show that the leverage coefficient has the expected sign in both the models i.e. EGARCH (negative and 

significant) and TARCH (positive and significant). To identify the best fitted model among the different 

specifications of GARCH models, Akaike Information Criterion (AIC) and Schwarz Information Criterion (SIC) 

were used, which proved that GARCH-M (1, 1) model found to be the best fitted model among all to capture the 
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symmetric effect as per AIC criterion and Log Likelihood ratio. Further, EGARCH (1, 1) model is found to be 

the best fitted model to capture the asymmetric volatility based on the highest Log Likelihood ratios and 

minimum AIC and SIC criterion. 
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