Methanol Extract of Peltophorum pterocarpum Stem Bark Has Antimalarial Activity and Normalizes Biochemical Changes Induced by Plasmodium berghei Infection

Osmund C. Enechi, Innocent U. Okagu, Joseph C. Ndefo, Christian C. Chibuogwu, Christian C. Amah, Amarachi G. Obinyima, Linda Kalu, Justin Okakpu, Lydia N. Amoke

Abstract


This study evaluated the antimalarial, haematological and biochemical status of Plasmodium berghei Anka 65-infected mice treated with methanol extract of Peltophorum pterocarpum stem bark (MEPT). The acute toxicity profile and phyto-constituents were also evaluated. Thirty mice were divided into 6 groups of 5 mice each. Group 1 served as normal control and received distilled water only. Group 2 was parasitized and untreated. Groups 3-5 were parasitized and treated with 200, 400 and 600 mg/kg b.w. body weight of MEPT respectively. Group 6 was parasitized and treated with 28 mg/kg. b.w. of arthemeter/lumenfantrin combination. Malaria parasitemia were monitored on treatment days 0-3. Antioxidant, liver, kidney and lipid peroxidation status were determined using classical methods 5 days post-treatment. There were dose-dependent reductions in malaria parasitemia percentages of groups 3-5 that are comparable with group 6. In addition, there were dose and duration-dependent increases in malaria chemo-suppression in groups 3-5. The existence of oxidative stress, lipid peroxidation, and kidney and liver dysfunctions were observed in group 2 when compared with group 1. Treatment of groups 3-5 with MEPT and group 6 with arthemeter/lumenfantrin for 4 days restored the biochemical anomalies induced by malaria. The extract was tolerable up to 5,000 mg/kg b.w. of MEPT. The presence of flavonoids, alkaloids, saponins, tannins, steroids, carotenoids, glycosides, anthraquinones, terpenoids and anthocyanins were detected in high amounts while phenols was detected in low amount in MEPT. These suggest that MEPT possesses antimalarial activity and normalizes malaria-modified biochemical changes. These effects might be attributed to its bioactive constituents.

Keywords: malaria, Peltophorum pterocarpum, phytochemicals, toxicity, biochemical dysfunctions

DOI: 10.7176/ALST/73-05

Publication date: April 30th 2019


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: ALST@iiste.org

ISSN (Paper)2224-7181 ISSN (Online)2225-062X

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org