Design Methodology of Fuzzy Expert System for the Diagnosis and Control of Obesity

Uduak Umoh, Etebong Isong

Abstract


Both developed and developing nations of the world have overtime experienced enormous increase in food and other consumables production. This has led to a rise in calorie intake by people living in these nations of the world. As calorie intake increases in the human system, lack of early detection or control leads to obesity. The study of obesity is gaining utmost importance because of the major health issues associated with it. If an obese prone patient is detected early enough, then quite a number of diseases can be prevented. The ability of fuzzy logic to reason with uncertain and imprecise data in addressing the specific problem of diagnosis and monitoring of diseases in our society cannot be over emphasized. In this paper we design methodology of fuzzy expert system to diagnose and monitor obesity in persons at early stage. The study will help reduce to a great minimum the fast rise of obesity in our society and the world at large. The proposed study is validated with MatLab, and is used as a tracking system with accuracy and robustness.

Keywords: Obesity, Fuzzy Inference System, Body Mass Index, Body fat, Waist circumference.


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CEIS@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2863

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org