Decoder based on Parallel Genetic Algorithm and Multi-objective Optimization for Low Density Parity Check Codes

Hasna Chaibi, Ahlam Berkani, My Ahmad Faqihi

Abstract


Genetic algorithms are powerful search techniques that are used successfully to solve problems in many different disciplines. This article introduces a new Parallel Genetic Algorithm for decoding LDPC codes (PGAD). The results show that the proposed algorithm gives large gains over the Sum-Product decoder, which proves its efficiency. We also show that the fitness function must be improved by Multi-objective Optimization, for this, we applied the Weighted Sum method to improve PGAD, this new version is called (MOGAD) gives higher performance compared to one.

Keywords: Parallel Genetic Algorithms decoder, Sum-Product decoder, Fitness Function, LDPC codes, Error correcting codes, Multi-objective optimization, Weighted sum method.


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CEIS@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2863

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org