Survey on Classification Algorithms for Data Mining:(Comparison and Evaluation)

Delveen Luqman Abd AL-Nabi, Shereen Shukri Ahmed

Abstract


Data mining concept is growing fast in popularity, it is a technology that involving methods at the intersection of (Artificial intelligent, Machine learning, Statistics and database system), the main goal of data mining process is to extract information from a large data into form which could be understandable for further use. Some algorithms of data mining are used to give solutions to classification problems in database.

In this paper a comparison among three classification’s algorithms will be studied, these are (K- Nearest Neighbor classifier, Decision tree and Bayesian network) algorithms. The paper will demonstrate the strength and accuracy of each algorithm for classification in term of performance efficiency and time complexity required. For model validation purpose, twenty-four-month data analysis is conducted on a mock-up basis.

Keywords: Decision tree, Bayesian network, k- nearest neighbour classifier.


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CEIS@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2863

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org