Improved pitting corrosion resistance of S.S 316L by Pulsed Current Gas Tungsten Arc Welding

I. Berenjani, A. Bakhtiari, K. Raeissi, M. Shamanian, A. Saatchi

Abstract


In this study, S.S 316L was welded using Direct Current Gas Tungsten Arc Welding (DGTAW) and Pulsed Current Gas Tungsten Arc Welding (PGTAW) methods. Optical observations, scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) were employed to study the effect of continuous and pulse currents on microstructure and phase transformation in weld metal (WM). In addition pits morphology were evaluated by SEM. The corrosion behaviour was analyzed using cyclic polarizaton tests and Mott-schottky measurements. The pulse current resulted in finer grain and more ferrite in WM. This can be due to the decrease in heat input and higher cooling rate encouraged by pulse current. Cyclic potentiodynamic polarization tests showed that the WM of sample produced by pulse current show higher corrosion and pitting resistances than that in sample produced by continuous current. The reason is attributed to lower segregation of solute elements such as chromium and molybdenum into the delta-ferrite and also finer grain size produced in WM due to lower heat input and higher cooling rate. Both of these factors increase the stability of passive layer formed. The results showed that the corrosion behaviour of WM in both conditions (pulse and continuous current) is higher than the base metal (BM). This fact is attributed to the presence of ferrite bands formed in BM due to the segregation of alloy elements. The Mott-schottky plots confirmed that the passive layer formed on welded samples was an n-type semiconductor. The results showed that the samples showed less pitting resistance contained more oxygen vacancies in their passive film structure. It is also concluded that the breakdown of passive layer and pitting formation obey point defect model (PDM).

Keywords: S.S 316L, Pulsed Current Gas Tungsten Arc Welding (PGTAW), lacy ferrite, vermicular ferrite, Pitting corrosion, Mott- Schottky.


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CMR@iiste.org

ISSN (Paper)2224-3224 ISSN (Online)2225-0956

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org