Power Balance Theory Control with Internal Model Controller Based Integrated Electronic Load Controller with Zig-Zag Transformer for Stand-Alone PEM Fuel Cell Feeding Three-Phase Four-Wire Non-Linear Load

Dipesh Kumar Karmakar

Abstract


Fuel cell (FC) power generation has drawn attention to supply electricity to rural areas because of its portability, self- sustainability, high potential capability, modularity, environment friendliness, easy maintainence and less weight. This paper presents stand-alone Proton exchange membrane fuel cell (PEMFC) generating system with DC-DC boost converter, Integrated electronic load controller (IELC) feeding three-phase four-wire non-linear loads. The DC-DC boost converter contributes to the overall system electrical efficiency. The power balance theory (PBT) with internal model controller (IMC) is applied to estimate the reference load current to control the six-leg voltage source converter (VSC). The IELC is realized with zig-zag/three single-phase transformer and a six-leg insulated-gate bipolar-transistor-based current-controlled voltage source converter, a chopper switch and auxiliary load on DC bus. The fuel cell power generating system is modeled and simulated in MATLAB environment using Simulink and sim power system (SPS).

Keywords:Fuel cell (FC), Proton exchange membrane fuel cell (PEMFC), Power balance theory(PBT),Internal Model Controller(IMC), Integrated electronic load controller (IELC), Voltage source converter(VSC).


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CTI@iiste.org

ISSN (Paper)2224-5774 ISSN (Online)2225-0492

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org