Comparative Analysis of Various Data Stream Mining Procedures and Various Dimension Reduction Techniques

Diksha Upadhyay, Susheel Jain, Anurag Jain

Abstract


In recent years data mining is contributing to be the great research area, as we know data mining is the process of extracting needful information from the given set of data which will be further used for various purposes, it could be for commercial use or for scientific use .while fetching the information (mined data) proper methodologies with good approximations have to be used .In our survey we have provided the study about various data stream clustering techniques and various dimension reduction techniques with their characteristics to improve the quality of clustering, we have also provided our approach(our proposal) for clustering the streamed data using suitable procedures ,In our approach for stream data mining a dimension reduction technique have been used then after the Fuzzy C-means algorithm have been applied on it to improve the quality of clustering.

Keywords: Data Stream, Dimension Reduction, Clustering


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CTI@iiste.org

ISSN (Paper)2224-5774 ISSN (Online)2225-0492

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org