Creating Business Intelligence through Machine Learning: An Effective Business Decision Making Tool

Yasir Shafi Reshi, Rafi Ahmad Khan

Abstract


Growing technological progressions have given rise to many issues concerning the contemporary decision making in business, which is a difficult phenomenon without Business Intelligence/ Machine Learning. The linking of machine learning with business intelligence is not only pivotal for business decision making but also for the business intelligence in totality, owing to the reason that in absence of machine learning, decision making couldn’t take place efficaciously. Machines need to learn, re-learn, and then only they can help your learning process. The below paper seeks to make this concept simple/ easy by removing the ambiguities using a general framework. In order to prove the impact of machine learning on business intelligence, we need to forecast the trends, what is going around the world – business has to stay updated, then only it can be a successful endeavour.  The paper posits the basic theories and definitions of business intelligence and machine learning. To learn from the past and forecast the future trends, many companies are adopting business intelligence tools and systems. Companies have understood the brilliance of enforcing achievements of the goals defined by their business strategies through business intelligence concepts and with the help of machine learning. It describes the insights on the role and requirement of real time BI by examining the business needs.

Keywords: Business Intelligence (BI); Machine Learning (ML); Artificial Neural Networks (ANN); Self-Organizing Maps (SOM); Data Mining (DM); Data Warehousing (DW).


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: IKM@iiste.org

ISSN (Paper)2224-5758 ISSN (Online)2224-896X

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org