Power Loss Reduction in Radial Distribution System by Using Plant Growth Simulation Algorithm

Sambugari Anil Kumar, K.Jitendra Goud

Abstract


The availability of an adequate amount of electricity and its utilization is essential for the growth and development of the country. The demand for electrical energy has outstripped the availability causing widespread shortages in different areas. The distribution network is a crucial network, which delivers electrical energy directly to the doorsteps of the consumer. In India the distribution networks are contributing to a loss of 15% against total system loss of 21%. Hence, optimal capacitor placement in electrical distribution networks has always been the concern of electric power utilities. As Distribution Systems are growing large and being stretched too far, leading to higher system losses and poor voltage regulation, the need for an efficient and effective distribution system has therefore become more urgent and important. In this regard, Capacitor banks are added on Radial Distribution system for Power Factor Correction, Loss Reduction and Voltage profile improvement. As Distribution Systems are growing large and being stretched too far, leading to higher system losses and poor voltage regulation, the need for an efficient and effective distribution system has therefore become more urgent and important. In this regard, Capacitor banks are added on Radial Distribution system for Power Factor Correction, Loss Reduction and Voltage profile improvement. Therefore it is important to find optimal location and sizes of capacitors required to minimize feeder losses. Reactive power compensation plays an important role in the planning of an electrical system. Reactive power compensation plays an important role in the planning of an electrical system. Capacitor placement & sizing are done by Loss Sensitivity Factors and Plant Growth Simulation Algorithm respectively. Loss Sensitivity Factors offer the important information about the sequence of potential nodes for capacitor placement. These factors are determined using single base case load flow study. Plant Growth Simulation Algorithm is well applied and found to be very effective in Radial Distribution Systems. The proposed method is tested on 33 and 34 bus distribution systems. The objective of reducing the losses and improvement in voltage profile has been successfully achieved. The main advantage of the proposed approach in relation to previously published random algorithms is that it does not require any external parameters such as barrier factors, crossover rate, mutation rate, etc. These parameters are hard to be effectively determined in advance and affect the searching performance of the algorithm new approach based on a plant growth simulation algorithm (PGSA) is presented for reactive power optimization. PGSA is a random search algorithm inspired by the growth process of plant phototropism. The objective function for optimization is to minimize the system active power loss.

Keywords: Distribution systems, Loss Sensitivity Factors, Capacitor placement, Plant growth simulation algorithm.


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: ISDE@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2871

1Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org