Ionospheric Delay Estimation during Ionospheric Depletion Events for Single Frequency Users of IRNSS

Rethika T Nirmala S, Rathnakara S C Ganeshan A S

Abstract


The IRNSS (Indian Regional Navigation System) navigation users estimate their position by using a receiver which receives the navigation signal from the IRNSS satellites which will be operating on L5 (1176.45MHz) and S (2492.028MHz) frequencies. There are 3 types of IRNSS users: 1) Dual frequency (L5 and S), 2) Single frequency (L5) and 3) Single frequency (S). The signal from the satellites before reaching the user receiver passes through the ionospheric layer of the atmosphere and suffers a delay. The delay in the signal introduces error in the position computed by the user. The dual frequency users of IRNSS correct the ionospheric error by taking advantage of the dispersive nature of ionosphere. On the other hand, single frequency user requisite an algorithm for computing the ionospheric delay along his line of sight. In IRNSS, the ionospheric error corrections for single frequency (L5 or S) users will be provided by two ways: 1) Grid based and 2) Coefficient based. These corrections may not be valid when an abnormal behavior of ionosphere occurs due to geomagnetic storm, solar coronal mass ejections or any other disturbances in the earth’s magnetic field. The abnormal behavior may result in increase or decrease of the TEC (Total Electron Content) in the ionosphere. Ionospheric depletion event is one such, where there is a sudden drop in TEC forming plasma bubbles travelling through the ionosphere. A user, whose line-of-sight when crosses such a TEC depleted area of ionosphere suffers from an extra error due to depletion. The amount of error is proportional to the depth of depletion. This error in the range ultimately results in the user position accuracy degradation. In this paper a novel algorithm has been designed and developed which will estimate the ionospheric delay, thereby providing ionospheric corrections even at times of depletions. The developed technique in turn provides achievable position accuracy during times of ionospheric depletions. The developed technique has been tested with GAGAN (GPS Aided GEO Augmented Navigation) INRES (Indian Reference Stations) data and IRNSS IRIMS (IRNSS Range and Integrity Monitoring Stations) data having deep ionospheric depletions. The fully tested and validated ionospheric delay estimation algorithm is proposed to be implemented in IRNSS single frequency (L5/S) receivers.

Keywords: IRNSS Single Frequency User, Ionospheric Error, Ionospheric Depletion, Ionospheric Delay Estimation, Kalman Filter


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: ISDE@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2871

1Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org