Contrasting Effects of Shade Tree Species Diversity on Incidence and Damage of Pests and Diseases of Robusta Coffee

Winnie Nanjego, Godfrey H. Kagezi, Samuel Kyamanywa, Judith Kobusinge, Geofrey Arinaitwe


In Uganda, most farmers grow their Robusta coffee, Coffea canephora in association with a diversity of shade tree species. Shade tree species diversity and density influence abiotic variables particularly, temperature and relative humidity. In turn, these may negatively or positively influence the population dynamics and damage caused by pest and diseases. Understanding these relationships is therefore vital for informing selection of shade tree species for ecological management of pests and diseases. We thus conducted a study in Kaweri Coffee Plantation Limited located in central Uganda to determine the effect of shade tree species diversity on the incidence and damage caused by pests and diseases on Robusta coffee. One plot measuring 100 x 100 m was demarcated in each of the four sections of the plantation: Kitagweta, Kyamutuma, Luwunga and Nonve. All the shade trees/shrubs and saplings (≤3 m) in the plot were counted and identified to species level. Additionally, incidence and damage of pests and diseases were assessed on 20 Robusta coffee trees selected along two diagonals in the plots. We recorded a total of 299 trees comprising of 22 species, with Solanum giganteum being the most abundant shrub (19.8 shrubs/ha) whereas, the most abundant shade tree species were Albizia chinensis (9.3 trees/ha) and Markhamia lutea (6.0 tree/ha). Eight (8) insect pests and two (2) diseases were recorded on Robusta coffee. These included, Xylosandrus compactus, Leucoptera coffeella, Leucoplema dohertyi, Epicampoptera andersoni, Prophantis smaragdina, Planococcus spp., Hypothenemus hampei, leaf eating beetles, Hemilleia vastatrix and Cercospora coffeicola. Our results further showed contrasting effects of shade tree species diversity on the incidence and damage of pests and diseases of Robusta coffee. Damage caused by X. compactus and E. andersoni as well as the incidence of H. vastatrix and C. coffeicola decreased significantly (p≤0.05) with increasing shade tree species diversity. Contrary, damage caused by all the other insect pests increased with increasing shade tree species diversity but, only significant (p≤0.05) in case of P. smaragdina, and Planococcus spp. There is therefore a need to thoroughly understand these dynamics if agroforestry systems are to be utilized as a strategy for ecological management of pests and diseases of Robusta coffee.

Keywords:Agroforestry-systems, Cercospora-coffeicola, Coffea-canephora, ecological-management, Epicampoptera-andersoni, Hemilleia-vastatrix, pest-and-disease-dynamics, Xylosandrus-compactus

DOI: 10.7176/JBAH/14-1-03

Publication date: January 31st 2024

Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email:

ISSN (Paper)2224-3208 ISSN (Online)2225-093X

Please add our address "" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright ©