A Multi-Stage Supply Chain Network Optimization Using Genetic Algorithms
Abstract
In today's global business market place, individual firms no longer compete as independent entities with unique brand names but as integral part of supply chain links. Key to success of any business is satisfying customer's demands on time which may result in cost reductions and increase in service level.
In supply chain networks decisions are made with uncertainty about product's demands, costs, prices, lead times, quality in a competitive and collaborative environment. If poor decisions are made, they may lead to excess inventories that are costly or to insufficient inventory that cannot meet customer's demands.
In this work we developed a bi-objective model that minimizes system wide costs of the supply chain and delays on delivery of products to distribution centers for a three echelon supply chain. Picking a set of Pareto front for multi-objective optimization problems require robust and efficient methods that can search an entire space. We used evolutionary algorithms to find the set of Pareto fronts which have proved to be effective in finding the entire set of Pareto fronts.
Key words: multi-objective optimization, Pareto fronts, evolutionary algorithms, supply chain networks, echelon.
To list your conference here. Please contact the administrator of this platform.
Paper submission email: MTM@iiste.org
ISSN (Paper)2224-5804 ISSN (Online)2225-0522
Please add our address "contact@iiste.org" into your email contact list.
This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.
Copyright © www.iiste.org