A Novel Neural Network Classifier for Brain Computer Interface

Aparna Chaparala, J.V.R. Murthy, B.Raveendra Babu, M.V.P.Chandra Sekhara Rao

Abstract


Brain computer interfaces (BCI) provides a non-muscular channel for controlling a device through electroencephalographic signals to perform different tasks. The BCI system records the Electro-encephalography (EEG) and detects specific patterns that initiate control commands of the device. The efficiency of the BCI depends upon the methods used to process the brain signals and classify various patterns of brain signal accurately to perform different tasks. Due to the presence of artifacts in the raw EEG signal, it is required to preprocess the signals for efficient feature extraction. In this paper it is proposed to implement a BCI system which extracts the EEG features using Discrete Cosine transforms. Also, two stages of filtering with the first stage being a butterworth filter and the second stage consisting of an moving average 15 point spencer filter has been used to remove random noise and at the same time maintaining a sharp step response. The classification of the signals is done using the proposed Semi Partial Recurrent Neural Network. The proposed method has very good classification accuracy compared to conventional neural network classifiers.

Keywords: Brain Computer Interface (BCI), Electro Encephalography (EEG), Discrete Cosine transforms(DCT), Butterworth filters, Spencer filters, Semi Partial Recurrent Neural network, laguarre polynomial


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CEIS@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2863

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org