Implementation of a Modified Counterpropagation Neural Network Model in Online Handwritten Character Recognition System

Fenwa O.D., Emuoyibofarhe J. O., Olabiyisi S.O., Ajala F. A., Falohun A. S.

Abstract


Artificial neural networks are one of the widely used automated techniques. Though they yield high accuracy, most of the neural networks are computationally heavy due to their iterative nature. Hence, there is a significant requirement for a neural classifier which is computationally efficient and highly accurate. To this effect, a modified Counter Propagation Neural Network (CPN) is employed in this work which proves to be faster than the conventional CPN. In the modified CPN model, there was no need of training parameters because it is not an iterative method like backpropagation architecture which took a long time for learning. This paper implemented a modified Counterpropagation neural network for recognition of online uppercase (A-Z), lowercase (a-z) English alphabets and digits (0-9). The system is tested for different handwritten character samples and better recognition accuracies of 65% to 96% were obtained compared to related work in literature.

 

Keywords: Artificial Neural Network, Counterpropagation Neural Network, Character Recognition, Feature Extraction.


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CEIS@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2863

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org