Edges Detection Based On Renyi Entropy with Split/Merge

Mohamed A. El-Sayed

Abstract


Most of the classical methods for edge detection are based on the first and second order derivatives of gray levels of the pixels of the original image. These processes give rise to the exponential increment of computational time, especially with large size of images, and therefore requires more time for processing. This paper shows the new algorithm based on both the Rényi entropy and the Shannon entropy together for edge detection using split and merge technique. The objective is to find the best edge representation and decrease the computation time. A set of experiments in the domain of edge detection are presented. The system yields edge detection performance comparable to the classic methods, such as Canny, LOG, and Sobel.  The experimental results show that the effect of this method is better to LOG, and Sobel methods. In addition, it is better to other three methods in CPU time. Another benefit comes from easy implementation of this method.

Keywords: Rényi Entropy, Information content, Edge detection, Thresholding


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CEIS@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2863

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org