Measuring Interestingness – Perspectives on Anomaly Detection
Abstract
We live in a data deluge. Our ability to gather, distribute, and store information has grown immensely over the past two decades. With this overabundance of data, the core knowledge discovery problem is no longer in the gathering of this data, but rather in the retrieving of relevant data efficiently. While the most common approach is to use rule interestingness to filter results of the association rule generation process, study of literature suggests that interestingness is difficult to define quantitatively and is best summarized as, “a record or pattern is interesting if it suggests a change in an established model.” In this paper we elaborate on the term interestingness, and the surrounding taxonomy of interestingness measures, anomalies, novelty and surprisingness. We review and summarize the current state of literature surrounding interestingness and associated approaches.
Keywords: Interestingness, anomaly detection, rare-class mining, Interestingness measures, outliers, surprisingness, novelty
To list your conference here. Please contact the administrator of this platform.
Paper submission email: CEIS@iiste.org
ISSN (Paper)2222-1727 ISSN (Online)2222-2863
Please add our address "contact@iiste.org" into your email contact list.
This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.
Copyright © www.iiste.org