Risk Assessment Model for Pluvial Flood Prediction Using Fuzzy-Based Classification Technique

Oladapo Kayode Abiodun, Ayankoya, F.Y., Idowu, S.A., Adekunle, Y.A

Abstract


Both developed and developing countries are promoting risk management and refining the ability to alleviate the effects of disaster both man-made and natural, which have become a threat to human life and the world’s economy. The variability in climate change, rapid urbanization and fast-growing socio-economic development has naturally increased the risk associated with flooding. A recent report showed that flood have affected more individuals than any other category of disaster in the 21st century with the highest percentage of 43% of all disaster events in 2019 and Africa been the second vulnerable continent after Asia. So, it is highly important to devise a scientific method for flood risk reduction since it cannot be eradicated. Machine learning can improve the risk management. The paper proposes a pluvial flood detection and prediction system based on machine learning techniques. The proposed model will employ a fuzzy rule-based classification approach for pluvial flood risk assessment.

Keywords: Machine Learning, Pluvial Flood, Risk, Fuzzy Rule-Based, Prediction

DOI: 10.7176/CEIS/12-1-07

Publication date: January 31st 2021


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CEIS@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2863

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org