Content Based Image Retrieval based on Shape with Texture Features

S. Santhosh Baboo, Sudhir Ramadass

Abstract


In areas of state, domain and hospitals, massive collections of digital pictures are being created. These image collections are the merchandise of digitizing existing collections of analogue images, diagrams, drawings, paintings, and prints. Retrieving the specified similar image from a large dataset is very difficult. A new image retrieval system is obtainable in this paper, for feature extraction HSV color space and wavelet transform approach are used. Initially constructed one dimension feature vector and represented the color feature it is made by that the color space is quantified in non-equal intervals. Then with the help of wavelet texture feature extraction is obtained. At last by using of wavelet transform combined the color feature and texture feature method. The illustration features are susceptible for different type images in image retrieval experiments. The color features opted to the rich color image with simple variety. Texture feature opted to the complex images. At the same time, experiments reveal that HSV texture feature based on wavelet transform has better effective performance and stability than the RGB. The same work is performed for the RGB color space and their results are compared with the proposed system. The result shows that CBIR with the HSV color space is retrieves image with more accuracy and reduced retrieval time.

Keywords--Content Based Image Retrieval, HSV, RGB


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CEIS@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2863

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org