Identification and Classification of Moving Vehicles on Road

Suresh Babu Changalasetty, Ahmed Said Badawy, Wade Ghribi, Haytham Ibrahim Ashwi, Ahmad Mohammed Al-Shehri, Ali Dhafer Ali Al-Shehri, Lalitha Saroja Thota, Ramakanth Medisetty

Abstract


It is important to know the road traffic density real time especially in cities for signal control and effective traffic management. In recent years, video monitoring and surveillance systems have been widely used in traffic management. Hence, traffic density estimation and vehicle classification can be achieved using video monitoring systems. The image sequences for traffic scenes are recorded by a stationary camera. The method is based on the establishment of correspondences between regions and vehicles, as the vehicles move through the image sequence. Background subtraction is used which improves the adaptive background mixture model and makes the system learn faster and more accurately, as well as adapt effectively to changing environments. The resulting system robustly identifies vehicles, rejecting background and tracks vehicles over a specific period of time. Once the (object) vehicle is tracked, the attributes of the vehicle like width, length, perimeter, area etc are extracted by image process feature extraction techniques. These features will be used in classification of vehicle as big or small using neural networks classification technique of data mining. In proposed system we use LABVIEW and Vision assistant module for image processing and feature extraction.  A feed-forward neural network is trained to classify vehicles using data mining WEKA toolbox. The system will solve major problems of human effort and errors in traffic monitoring and time consumption in conducting survey and analysis of data. The project will benefit to reduce cost of traffic monitoring system and complete automation of traffic monitoring system.

Keywords: Image processing, Feature extraction, Segmentation, Threshold, Filter, Morphology, Blob, LABVIEW, NI, VI, Vision assistant, Data mining, Machine learning, Neural network, Back propagation, Multi layer perception, Classification, WEKA


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CEIS@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2863

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org