Shrinkage and mechanical performance of geopolymeric mortars based on calcined Tunisian clay
Abstract
Infrastructure rehabilitation represents a multitrillion dollar opportunity for the construction industry. Since the majority of the existent infrastructures are Portland cement concrete based this means that concrete infrastructure rehabilitation is a hot issue to be dealt with. Geopolymers are novel inorganic binders with high potential to replace Portland cement based ones. Geopolymerization is a complex chemical process evolving various aluminosilicate oxides with silicates under highly alkaline conditions, yielding polymeric units, similar to those of an aluminosilicate glass. So far very few studies in the geopolymer field have addressed the rehabilitation of deteriorated concrete structures. This paper discloses some results of an investigation concerning the development geopolymeric repair mortars based on a calcined Tunisian clay. The results show that Tunisian calcined clay based mortars have hydration products with typical geopolymeric phases. Results also show that the geopolymeric mortar shows a high unrestrained shrinkage behavior and that its modulus of elasticity is below the threshold required for this repair mortars.
To list your conference here. Please contact the administrator of this platform.
Paper submission email: CMR@iiste.org
ISSN (Paper)2224-3224 ISSN (Online)2225-0956
Please add our address "contact@iiste.org" into your email contact list.
This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.
Copyright © www.iiste.org