HIV-I Protease Based Inhibitor Discovery

T ANTHONEY SWAMY, GUMMADI SAMUEL MOSES

Abstract


We can devise a drug (inhibitor) to restrain the activity of gene. As a gene engenders protein/enzyme, so to circumvent the development of any disease causing proteins, we have to stop the activity of that gene. With the aid of different bioinformatics tools and software’s we can do this. A protease is an enzyme that smites proteins to their constituent peptides. The HIV-I Protease (PR) hydrolyses viral polyproteins into functional protein products that are vital for viral assembly and subsequent activity. HIV-I protease activity is decisive for the terminal maturation of infectious virions. Once HIV enters the cell, viral RNA experiences reverse transcription to generate double-stranded DNA (a step inhibited by nucleoside analogues such as zidovudine, didanosine, zalcitabine, stavudine, and lamivudine).

In the presence of HIV-I protease inhibitors, the virion is incapable to mature and is quickly cleared by inadequately comprehended mechanisms. Figure 1, left, is a photomicrograph of normal budding virions from an infected cell, while Figure 1, right, determines the effect of bathing these cells with the protease inhibitor, saquinavir. The consequent lack of a dense core for these "ghosted" particles is the feature of noninfectious HIV virions. By applying ncbi we can acquire the nucleotide and protein sequence of HIV-I Protease. By tool and softwares like pfam, clustalw, gold, blast, we designed the inhibitor “SKF 108737”for HIV-I protease.

Keywords: Inhibitor (Drug), HIV-I protease


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: CPER@iiste.org

ISSN (Paper)2224-7467 ISSN (Online)2225-0913

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org