Temperature Dependent Current-voltage Characteristics of P-type Crystalline Silicon Solar Cells Fabricated Using Screen-printing Process
Abstract
We have fabricated p-type crystalline silicon (Si) solar cells using screen-printing process and investigated their electrical properties. Ph screen printing process led to the uniform formation of n+ emitter. As a result of interaction between Ph-dopant paste and Si substrate, a phosphosilicate glass layer was formed on n+ emitter surface. The current-voltage characteristics were carried out in the temperature range of 175 – 450 K in steps of 25 K. The variation in current level at a particular voltage strongly depended on temperature, indicating that the current transport across the junction was a temperature activated process. The reverse leakage current gradually increased with increasing measurement temperature up to 350 K, above which it rapidly increased. Arrhenius plot of the leakage current revealed that reverse leakage current in low and high temperature regions were dominated by the tunneling mechanism, and generation and recombination mechanism, respectively.
Keywords: P-type Si solar cell, screen-printing, I-V, tunneling, generation and recombination, reverse leakage current
To list your conference here. Please contact the administrator of this platform.
Paper submission email: JETP@iiste.org
ISSN (Paper)2224-3232 ISSN (Online)2225-0573
Please add our address "contact@iiste.org" into your email contact list.
This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.
Copyright © www.iiste.org