Sentiment Analysis of Afaan Oromoo Facebook Media Using Deep Learning Approach

Megersa Oljira Rase

Abstract


The rapid development and popularity of social media and social networks provide people with unprecedented opportunities to express and share their thoughts, views, opinions and feelings about almost anything through their personal webpages and blogs or using social network sites like Facebook, Twitter, and Blogger.  This study focuses on sentiment analysis of social media content because automatically identifying and classifying opinions from social media posts can provide significant economic values and social benefits. The major problem with sentiment analysis of social media posts is that it is extremely vast, fragmented, unorganized and unstructured. Nevertheless, many organizations and individuals are highly interested to know what other peoples are thinking or feeling about their services and products. Therefore, sentiment analysis has increasingly become a major area of research interest in the field of Natural Language Processing and Text Mining. In general, sentiment analysis is the process of automatically identifying and categorizing opinions in order to determine whether the writer's attitude towards a particular entity is positive or negative. To the best of the researcher’s knowledge, there is no Deep learning approach done for Afaan Oromoo Sentiment analysis to identify the opinion of the people on social media content. Therefore, in this study, we focused on investigating Convolutional Neural Network and Long Short Term Memory deep learning approaches for the development of sentiment analysis of Afaan Oromoo social media content such as Facebook posts comments. To this end, a total of 1452 comments collected from the official site of the Facebook page of Oromo Democratic Party/ODP for the study. After collecting the data, manual annotation is undertaken. Preprocessing, normalization, tokenization, stop word removal of the sentence are performed. We used the Keras deep learning python library to implement both deep learning algorithms. Long Short Term Memory and Convolutional Neural Network, we used word embedding as a feature. We conducted our experiment on the selected classifiers. For classifiers, we used 80% training and 20% testing rule. According to the experiment, the result shows that Convolutional Neural Network achieves the accuracy of 89%. The Long Short Memory achieves accuracy of 87.6%. Even though the result is promising there are still challenges.

Keywords: Sentiment Analysis; Opinionated Afaan Oromoo facebook comments; Oromo Democratic Party Facebook page

DOI: 10.7176/NMMC/90-02

Publication date:May 31st 2020


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: NMMC@iiste.org

ISSN (Paper)2224-3267 ISSN (Online)2224-3275

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org