SPARE PARTS INVENTORY OPTIMIZATION FOR AUTO MOBILE SECTOR
Abstract
In this paper the objective is to determine the optimal allocation of spares for replacement of defective parts on-board of a usage. The minimization of the total supply chain cost can only be achieved when optimization of the base stock level is carried out at each member of the supply chain. A serious issue in the implementation of the same is that the excess stock level and shortage level is not static for every period. This has been achieved by using some forecasting and optimization techniques. Optimal inventory control is one of the significant tasks in supply chain management. The optimal inventory control methodologies intend to reduce the supply chain cost by controlling the inventory in an effective manner, such that, the SC members will not be affected by surplus as well as shortage of inventory. In this paper, we propose an efficient approach that effectively utilizes the Genetic Algorithm for optimal inventory control. This paper reports a method based on genetic algorithm to optimize inventory in supply chain management. We focus specifically on determining the most probable excess stock level and shortage level required for inventory optimization in the supply chain so that the total supply chain cost is minimized . So, the overall aim of this paper is to find out the healthy stock level by means of that safety stock is maintained throughout the service period.
Keywords: genetic algorithm, optimization, Inventory
To list your conference here. Please contact the administrator of this platform.
Paper submission email: EJBM@iiste.org
ISSN (Paper)2222-1905 ISSN (Online)2222-2839
Please add our address "contact@iiste.org" into your email contact list.
This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.
Copyright © www.iiste.org