Implementation of Anomaly Based Network Intrusion Detection by Using Q-learning Technique
Abstract
Network Intrusion detection System (NIDS) is an intrusion detection system that tries to discover malicious activity such as service attacks, port scans or even attempts to break into computers by monitoring network traffic. Data mining techniques make it possible to search large amounts of data for characteristic rules and patterns. If applied to network monitoring data recorded on a host or in a network, they can be used to detect intrusions, attacks or anomalies. We proposed “machine learning method”, cascading Principal Component Analysis (PCA) and the Q-learning methods to classifying anomalous and normal activities in a computer network. This paper investigates the use of PCA to reduce high dimensional data and to improve the predictive performance. On the reduced data, representing a density region of normal or anomaly instances, Q-learning strategies are applied for the creation of agents that can adapt to unknown, complex environments. We attempted to create an agent that would learn to explore an environment and collect the malicious within it. We obtained interesting results where agents were able to re-adapt their learning quickly to the new traffic and network information as compare to the other machine learning method such as supervised learning and unsupervised learning.
Keywords: Intrusion, Anomaly Detection, Data Mining, KDD Cup’99, PCA, Q-learning.
To list your conference here. Please contact the administrator of this platform.
Paper submission email: NCS@iiste.org
ISSN (Paper)2224-610X ISSN (Online)2225-0603
Please add our address "contact@iiste.org" into your email contact list.
This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.
Copyright © www.iiste.org